Skip to main content
Log in

Structural basis for the isotype-specific interactions of ferredoxin and ferredoxin: NADP+ oxidoreductase: an evolutionary switch between photosynthetic and heterotrophic assimilation

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In higher plants, ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) are each present as distinct isoproteins of photosynthetic type (leaf type) and non-photosynthetic type (root type). Root-type Fd and FNR are considered to facilitate the electron transfer from NADPH to Fd in the direction opposite to that occurring in the photosynthetic processes. We previously reported the crystal structure of the electron transfer complex between maize leaf FNR and Fd (leaf FNR:Fd complex), providing insights into the molecular interactions of the two proteins. Here we show the 2.49 Å crystal structure of the maize root FNR:Fd complex, which reveals that the orientation of FNR and Fd remarkably varies from that of the leaf FNR:Fd complex, giving a structural basis for reversing the redox path. Root FNR was previously shown to interact preferentially with root Fd over leaf Fd, while leaf FNR retains similar affinity for these two types of Fds. The structural basis for such differential interaction was investigated using site-directed mutagenesis of the isotype-specific amino acid residues on the interface of Fd and FNR, based on the crystal structures of the FNR:Fd complexes from maize leaves and roots. Kinetic and physical binding analyses of the resulting mutants lead to the conclusion that the rearrangement of the charged amino acid residues on the Fd-binding surface of FNR confers isotype-specific interaction with Fd, which brings about the evolutional switch between photosynthetic and heterotrophic redox cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akashi T, Matsumura T, Ideguchi T, Iwakiri K, Kawakatsu T, Taniguchi I, Hase T (1999) Comparison of the electrostatic binding sites on the surface of ferredoxin for two ferredoxin-dependent enzymes, ferredoxin-NADP-reductase and sulfite reductase. J Biol Chem 274:29399–29405

    Article  CAS  PubMed  Google Scholar 

  • Aliverti A, Faber R, Finnerty CM, Ferioli C, Pandini V, Negri A, Karplus PA, Zanetti G (2001) Biochemical and crystallographic characterization of ferredoxin-NADP+ reductase from nonphotosynthetic tissues. BioChemistry 40:14501–14508

    Article  CAS  PubMed  Google Scholar 

  • Arakaki AK, Ceccarelli EA, Carrillo N (1997) Plant-type ferredoxin-NADP+ reductases: a basal structural framework and a multiplicity of functions. FASEB J 11:133–140

    CAS  PubMed  Google Scholar 

  • Binda C, Coda A, Aliverti A, Zanetti G, Mattevi A (1998) Structure of the mutant E92K of [2Fe-2S] ferredoxin I from Spinacia oleracea at 1.7 A resolution. Acta Crystallogr D 54:1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Bowsher CG, Hucklesby DP Emes MJ (1993) Induction of ferredoxin-NADP+ oxidoreductase and ferredoxin synthesis in pea root plastids during nitrate assimilation. Plant J 3:463–467

    Article  CAS  Google Scholar 

  • Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54:905–921

    Article  PubMed  Google Scholar 

  • Catalano-Dupuy DL, Musumeci MA, López-Rivero A, Ceccarelli EA (2011) A highly stable plastidic-type ferredoxin-NADP(H) reductase in the pathogenic bacterium Leptospira interrogans. PLoS One 6(10):e26736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Cryst D 50:760–763

    Article  Google Scholar 

  • Correll CC, Ludwig ML, Bruns CM, Karplus PA (1993) Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Protein Sci 2:2112–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • Emes MJ, Neuhaus HE (1997) Metabolism and transport in non-photosynthetic plastids. J Exp Bot 48:1995–2005

    CAS  Google Scholar 

  • Esnouf RM (1997) An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph 15:132–134

    Article  CAS  Google Scholar 

  • Goss T, Hanke G (2014) The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr Protein Pept Sci 15(4):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke G, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ 36(6):1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Hanke GT, Kurisu G, Kusunoki M, Hase T (2004) Fd:FNR electron transfer complexes: evolutionary refinement of structural interactions. Photosynth Res 81:317–327

    Article  CAS  PubMed  Google Scholar 

  • Hase T, Kimata Y, Yonekura K, Matsumura T, Sakakibara H (1991) Molecular-cloning and differential expression of the maize ferredoxin gene family. Plant Physiol 96:77–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson A, Beharry ZM, Eby DM et al (2002) X-ray crystal structure of benzoate 1,2-dioxygenase reductase from Acinetobacter sp. Strain ADP1. J Mol Biol 318:261–272

    Article  CAS  PubMed  Google Scholar 

  • Kimata Y, Hase T (1989) Localization of ferredoxin isoproteins in mesophyll and bundle sheath cells in maize leaf. Plant Physiol 89:1193–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimata-Ariga Y, Saitoh T, Ikegami T, Horii T, Hase T (2007) Molecular interaction of ferredoxin and ferredoxin-NADP+ reductase from human malaria parasite. J Biochem 142:715–720

    Article  CAS  PubMed  Google Scholar 

  • Knaff DB (1996) Ferredoxin and ferredoxin-dependent enzymes. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Advances in photosynthesis and respiration, vol 4. Springer, Dordrecht, pp 333–361

    Chapter  Google Scholar 

  • Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y, Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase. Nat Struct Biol 8:117–121

    Article  CAS  PubMed  Google Scholar 

  • Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugiyama T, Murata H, Takao T, Shimonishi Y, Hase T (1999) Complementary DNA cloning and characterization of ferredoxin localized in bundle-sheath cells of maize leaves. Plant Physiol 119:481–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merritt EA, Murphy MEP (1994) Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D 50:869–873

    Article  CAS  PubMed  Google Scholar 

  • Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gómez-Moreno C, Frey M (2000) A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep 1:271–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onda Y, Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugiyama T, Hase T (2000) Differential interaction of maize root ferredoxin:NADP+ oxidoreductase with photosynthetic and nonphotosynthetic ferredoxin isoproteins. Plant Physiol 123:1037–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossmann MG, van Beek CG (1999) Data processing. Acta Cryst D 55:1631–1653

    Article  CAS  Google Scholar 

  • Sakakibara Y, Kimura H, Iwamura A, Saitoh T, Ikegami T et al (2012) A new structural insight into differential interaction of cyanobacterial and plant ferredoxins with nitrite reductase as revealed by NMR and X-ray crystallographic studies. J Biochem 151(5):483–492

    Article  CAS  PubMed  Google Scholar 

  • Vollmer M, Thomsen N, Wiek S, Seeber F (2001) Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 276:5483–5490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Michael J. Emes (University of Guelph), Prof. Masami Kusunoki (University of Yamanashi), Prof. T. Tsukihara (IPR, Osaka University), Drs. N. Kamiya (Riken), M. Kawamoto (JASRI), N. Igarashi, M. Suzuki, N. Watanabe, and N. Sakabe (PF, KEK) for their helpful discussions, and Mses. R. Igarashi and S. Ujita for initial crystallization trials. This work was supported in part by grants-in-aids from the Ministry of Culture, Education, Science and Sports and Technology of Japan and from Japan Science and Technology Agency (JST)–CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Kimata-Ariga.

Additional information

Fumio Shinohara, Genji Kurisu and Toshiharu Hase have contributed equally.

Coordinates: Atomic coordinates have been deposited in the Protein Data Bank under ID codes of 5H57 for FdIII, 5H59 for R-FNR and 5H5J for FdIII:R-FNR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinohara, F., Kurisu, G., Hanke, G. et al. Structural basis for the isotype-specific interactions of ferredoxin and ferredoxin: NADP+ oxidoreductase: an evolutionary switch between photosynthetic and heterotrophic assimilation. Photosynth Res 134, 281–289 (2017). https://doi.org/10.1007/s11120-016-0331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0331-1

Keywords

Navigation