Skip to main content
Log in

Involvement of molecular oxygen in the donor-side photoinhibition of Mn-depleted photosystem II membranes

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

It has been shown by Khorobrykh et al. (Biochemistry (Moscow) 67:683–688, 2002); Yanykin et al. (Biochim Biophys Acta 1797:516–523, 2010); Khorobrykh et al. (Biochemistry 50:10658–10665, 2011) that Mn-depleted photosystem II (PSII) membrane fragments are characterized by an enhanced oxygen photoconsumption on the donor side of PSII which is accompanied with hydroperoxide formation and it was suggested that the events are related to the oxidative photoinhibition of PSII. Experimental confirmation of this suggestion is presented in this work. The degree of photoinhibition was determined by the loss of the capability of exogenous electron donors (Mn2+ or sodium ascorbate) to the reactivation of electron transport [measured by the light-induced changes of chlorophyll fluorescence yield (∆F)] in Mn-depleted PSII membranes. The transition from anaerobic conditions to aerobic ones significantly activated photoinhibition of Mn-depleted PSII membranes both in the absence and in the presence of exogenous electron acceptor, ferricyanide. The photoinhibition of Mn-depleted PSII membranes was suppressed upon the addition of exogenous electron donors (Mn2+, diphenylcarbazide, and ferrocyanide). The addition of superoxide dismutase did not affect the photoinhibition of Mn-depleted PSII membranes. It is concluded that the interaction of molecular oxygen (rather than superoxide anion radical formed on the acceptor side of PSII) with the oxidized components of the donor side of PSII reflects the involvement of O2 in the donor-side photoinhibition of Mn-depleted PSII membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PSII:

Photosystem II

RC:

Reaction center

WOC:

Water-oxidizing complex

Mn-depleted PSII membranes:

Photosystem II membrane fragments deprived of manganese

Pheo:

Pheophytin—the primary electron acceptor of PSII

P680 :

The primary electron donor of PSII

QA :

The primary plastoquinone electron acceptor of PSII

QB :

The secondary plastoquinone electron acceptor of PSII

TyrZ:

Redox active tyrosine residue 161 of D1 protein

SOD:

Superoxide dismutase

Cyt c :

Cytochrome c

DPC:

Diphenylcarbazide

ΔF:

Photoinduced changes of chlorophyll fluorescence yield of PSII

References

  • Allakhverdiev SI, Klimov VV, Demeter S (1992) Thermoluminescence evidence for light-induced oxidation of tyrosine and His residues in manganese-depleted photosystem II particles. FEBS Lett 297:51–54

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV, Mimuro M (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA 107(8):3924–3929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ananyev GM, Renger G, Wacker U, Klimov VV (1994) The photoproduction of superoxide radicals and the superoxide dismutase activity of photosystem II. The possible involvement of cytochrome b559. Photosynth Res 41:327–338

    Article  CAS  PubMed  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  PubMed  Google Scholar 

  • Baranov SV, Tyryshkin AM, Katz D, Dismukes GC, Ananyev GM, Klimov VV (2004) Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation. Biochemistry 43:2070–2079

    Article  CAS  PubMed  Google Scholar 

  • Berthomieu C, Boussac A (1995) His oxidation in the S2 to S3 transition probed by FTIR difference spectroscopy in the Ca2+-depleted photosystem II: comparison with His radicals generated by UV irradiation. Biochemistry 34:1541–1548

    Article  CAS  PubMed  Google Scholar 

  • Blubaugh DJ, Atamian M, Babcock GT, Golbeck JH, Cheniae GM (1991) Photoinhibition of hydroxylamine-extracted photosystem II membranes: identification of the sites of photodamage. Biochemistry 30:7586–7597

    Article  CAS  PubMed  Google Scholar 

  • Chan T, Shimizu Y, Pospíšil P, Nijo N, Fujiwara A, Taninaka Y, Ishikawa T, Hori H, Nanba D, Imai A, Morita N, Yoshioka-Nishimura M, Izumi Y, Yamamoto Y, Kobayashi H, Mizusawa N, Wada H, Yamamoto Y (2012) Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. PLoS One 7:e52100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen GX, Kazimir J, Cheniae GM (1992) Photoinhibition of hydroxylamine extracted photosystem II membranes: studies of the mechanism. Biochemistry 31:11072–11083

    Article  CAS  PubMed  Google Scholar 

  • De Paula JC, Innes JB, Brudvig GW (1985) Electron transfer in photosystem II at cryogenic temperatures. Biochemistry 24:8114–8120

    Article  PubMed  Google Scholar 

  • Eckert HJ, Geiken B, Bernarding J, Napiwotzki A, Eichler HJ, Renger G (1991) Two sites of photoinhibition of the electron transfer in oxygen evolving and Tris-treated PS II membrane fragments from spinach. Photosynth Res 27:97–108

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Ford RC, Evans MCW (1983) Isolation of a photosystem 2 preparation from higher plants with highly enriched oxygen evolution activity. FEBS Lett 160:159–164

    Article  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosytems II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  CAS  PubMed  Google Scholar 

  • Hanley J, Deligiannakis Y, Pascal A, Faller P, Rutherford AW (1999) Carotenoid oxidation in photosystem II. Biochemistry 38:8189–8195

    Article  CAS  PubMed  Google Scholar 

  • Ishikita H, Loll B, Biesiadka J, Saenger W, Knapp E-W (2005) Redox potentials of chlorophylls in the photosystem II reaction center. Biochemistry 44:4118–4124

    Article  CAS  PubMed  Google Scholar 

  • Jegerschoeld C, Virgin I, Styring S (1990) Light-dependent degradation of the D1 protein in photosystem II is accelerated after Inhibition of the water splitting reaction. Biochemistry 29:6179–6186

    Article  CAS  Google Scholar 

  • Khorobrykh SA, Ivanov BN (2002) Oxygen reduction in a plastoquinone pool of isolated pea thylakoids. Photosynth Res 71:209–219

    Article  CAS  PubMed  Google Scholar 

  • Khorobrykh SA, Khorobrykh AA, Klimov VV, Ivanov BN (2002) Photoconsumption of oxygen in photosystem II preparations under impairment of the water-oxidizing complex. Biochemistry (Moscow) 67:683–688

    Article  CAS  Google Scholar 

  • Khorobrykh SA, Khorobrykh AA, Yanykin DV, Ivanov BN, Klimov VV, Mano J (2011) Photoproduction of catalase-insensitive peroxides on the donor side of manganese-depleted photosystem II: evidence with a specific fluorescent probe. Biochemistry 50(49):10658–10665

    Article  CAS  PubMed  Google Scholar 

  • Kirilovsky D, Rutherford AW, Etienne AL (1994) Influence of DCMU and ferricyanide on photodamage in photosystem II. Biochemistry 33:3087–3095

    Article  CAS  PubMed  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Demeter S, Krasnovsky AA (1979) Photoreduction of pheophytin in chloroplast photosystem II as a function of the redox potential of the medium. Dokl AN SSSR (Russian) 249:227–230

    CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Shuvalov VA, Krasnovsky AA (1982) Effect of extraction and re-addition of manganese on light reactions of photosystem II preparations. FEBS Lett 148:307–312

    Article  CAS  PubMed  Google Scholar 

  • Klimov VV, Shafiev MA, Allakhverdiev SI (1989) Photoinactivation of photosystem II subchloroplast particles after a complete removal of manganese. Russ J Plant Physiol 36:1073–1079

    CAS  Google Scholar 

  • Klimov VV, Shafiev MA, Allakhverdiev SI (1990) Photoinactivation of the reactivation capacity of photosystem II in pea subchloroplast particles after a complete removal of manganese. Photosynth Res 23:59–65

    Article  CAS  PubMed  Google Scholar 

  • Klimov VV, Allakhverdiev SI, YaM Feyziev, Baranov SV (1995) Bicarbonate requirement for the donor side of photosystem II. FEBS Lett 363:251–255

    Article  CAS  PubMed  Google Scholar 

  • Klimov VV, Baranov SV, Allakhverdiev SI (1997) Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation. FEBS Lett 418:243–246

    Article  CAS  PubMed  Google Scholar 

  • Koivuniemi A, Swiezewska E, Aro E-M, Styring S, Andersson B (1993) Reduced content of the quinone acceptor QA in photosystem II complexes isolated from thylakoid membranes after prolonged photoinhibition under anaerobic conditions. FEBS Lett 327:343–346

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta 1767:509–519

    Article  CAS  PubMed  Google Scholar 

  • Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208

    Article  CAS  PubMed  Google Scholar 

  • Ono T, Inoue Y (1991) Biochemical evidence for His oxidation in photosystem II depleted of the Mn-cluster for O2-evolution. FEBS Lett 278:183–186

    Article  CAS  PubMed  Google Scholar 

  • Pospišil P, Arato A, Krieger-Liszkay A, Rutherford AW (2004) Hydroxyl radical generation by photosystem II. Biochemistry 43:6783–6792

    Article  PubMed  Google Scholar 

  • Šetlík I, Allakhverdiev SI, Nedbal L, Šetlíková E, Klimov VV (1990) Three types of photosystem II photoinactivation: 1. Damaging processes on the acceptor side. Photosynth Res 23:39–48

    Article  PubMed  Google Scholar 

  • Stewart DH, Brudvig GW (1998) Cytochrome b559 of photosystem II. Biochim Biophys Acta 1367:63–87

  • Telfer A, De Las Rivas J, Barber J (1991) β-carotene within the Isolated photosystem II reaction centre: photooxidation and Irreversible bleaching of this chromophore by oxidised P680. Biochim Biophys Acta 1060:106–114

    Article  CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269:13244–13253

    CAS  PubMed  Google Scholar 

  • Telfer A, Frolov D, Barber J, Robert B, Pascal A (2003) Oxidation of the two β-carotene molecules in the photosystem II reaction center. Biochemistry 42:1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Tracewell CA, Vrettos JS, Bautista JA, Frank HA, Brudvig GW (2001) Carotenoid photooxidation in photosystem II. Arch Biochem Biophys 385:61–69

    Article  CAS  PubMed  Google Scholar 

  • Tyystjärvi E (2013) Photoinhibition of photosystem II. Int Rev Cell Mol Biol 300:243–303

    Article  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–61

    Article  CAS  PubMed  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E-M, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci 89:1408–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang WQ, Chapman DJ, Barber J (1992) Inhibition of water splitting increases the susceptibility of photosystem II to photoinhibition. Plant Physiol 99:16–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanykin DV, Khorobrykh AA, Khorobrykh SA, Klimov VV (2010) Photoconsumption of molecular oxygen on both donor and acceptor sides of photosystem II in Mn-depleted subchloroplast membrane fragments. Biochim Biophys Acta 1797:516–523

    Article  CAS  PubMed  Google Scholar 

  • Yanykin DV, Khorobrykh AA, Khorobrykh SA, Pshybytko NL, Klimov VV (2013) Flash-induced consumption of molecular oxygen on the donor side of photosystem II in Mn-depleted subchloroplast membrane fragments: specific effects of manganese and calcium ions. Photosynth Res 117:367–374

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation of Basic Research (14-04-01667 and 14-04-00974) and MCB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khorobrykh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorobrykh, A.A., Klimov, V.V. Involvement of molecular oxygen in the donor-side photoinhibition of Mn-depleted photosystem II membranes. Photosynth Res 126, 417–425 (2015). https://doi.org/10.1007/s11120-015-0135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0135-8

Keywords

Navigation