Skip to main content
Log in

Carotenoid–chlorophyll coupling and fluorescence quenching in aggregated minor PSII proteins CP24 and CP29

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

It is known that aggregation of isolated light-harvesting complex II (LHCII) in solution results in high fluorescence quenching, reduced chlorophyll fluorescence lifetime, and increased electronic coupling of carotenoid (Car) S1 and chlorophyll (Chl) Qy states, as determined by two-photon studies. It has been suggested that this behavior of aggregated LHCII mimics aspects of non-photochemical quenching processes of higher plants and algae. However, several studies proposed that the minor photosystem II proteins CP24 and CP29 also play a significant role in regulation of photosynthesis. Therefore, we use a simple protocol that allows gradual aggregation also of CP24 and CP29. Similarly, as observed for LHCII, aggregation of CP24 and CP29 also leads to increasing fluorescence quenching and increasing electronic Car S1–Chl Qy coupling. Furthermore, a direct comparison of the three proteins revealed a significant higher electronic coupling in the two minor proteins already in the absence of any aggregation. These differences become even more prominent upon aggregation. A red-shift of the Qy absorption band known from LHCII aggregation was also observed for CP29 but not for CP24. We discuss possible implications of these results for the role of CP24 and CP29 as potential valves for excess excitation energy in the regulation of photosynthetic light harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    Article  CAS  PubMed  Google Scholar 

  • Amarie S, Wilk L, Barros T, Kuhlbrandt W, Dreuw A, Wachtveitl J (2009) Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29. Biochim Biophys Acta 1787(6):747–752

    Article  CAS  PubMed  Google Scholar 

  • Andersson J, Walters RG, Horton P, Jansson S (2001) Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell 13(5):1193–1204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR (2008) Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J Biol Chem 283:3550–3558

    Article  CAS  PubMed  Google Scholar 

  • Avenson TJ, Ahn TK, Niyogi KK, Ballottari M, Fleming GR (2009) Lutein can act as a switchable charge transfer charge transfer quencher in the CP26 light-harvesting complex. J Biol Chem 284:2830–2835

    Article  CAS  PubMed  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284(22):15255–15266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caffarri S, Passarini F, Bassi R, Croce R (2007) A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. FEBS Lett 581(24):4704–4710

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28(19):3052–3063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YC, Ahn TK, Avenson TJ, Zigmantas D, Niyogi KK, Ballottari M, Bassi R, Fleming GR (2008) Kinetic modeling of charge-transfer quenching in the CP29 minor complex. J Phys Chem B 112:13418–13423

    Article  CAS  PubMed  Google Scholar 

  • Crimi M, Dorra D, Bosinger CS, Giuffra E, Holzwarth AR, Bassi R (2001) Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29. Effects of zeaxanthin, pH and phosphorylation. Eur J Biochem 268(2):260–267

    Article  CAS  PubMed  Google Scholar 

  • Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10(7):492–501

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Müller MG, Caffarri S, Bassi R, Holzwarth AR (2003) Energy transfer pathways in the minor antenna complex CP29 of photosystem II: a femtosecond study of carotenoid to chlorophyll transfer on mutant and WT complexes. Biophys J 84(4):2517–2532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dainese P, Bassi R (1991) Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. J Biol Chem 266(13):8136–8142

    CAS  PubMed  Google Scholar 

  • de Bianchi S, Dall’Osto L, Tognon G, Morosinotto T, Bassi R (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem ii subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20(4):1012–1028

    Article  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  CAS  PubMed  Google Scholar 

  • Duffy CDP, Chmeliov J, Macernis M, Sulskus J, Valkunas L, Ruban AV (2013) Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII. J Phys Chem B 117(38):10974–10986

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395

    Article  CAS  PubMed  Google Scholar 

  • Holleboom CP, Walla P (2014) The back and forth of energy transfer between carotenoids and chlorophylls and its role in the regulation of light harvesting. Photosynth Res 119(1–2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Holleboom CP, Yoo S, Liao PN, Compton I, Haase W, Kirchhoff H, Walla PJ (2013) Carotenoid-chlorophyll coupling and fluorescence quenching correlate with protein packing density in grana-thylakoids. J Phys Chem B 117(38):11022–11030

    Article  CAS  PubMed  Google Scholar 

  • Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43(26):8281–8289

    Article  CAS  PubMed  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll—protein complex. FEBS Lett 292:1–4

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1994) Regulation of light harvesting in green plants (indication by nonphotochemical quenching of chlorophyll fluorescence). Plant Physiol 106:415–420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Wentworth M, Ruban A (2005) Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett 579:4201–4206

    Article  CAS  PubMed  Google Scholar 

  • Ilioaia C, Johnson MP, Liao P-NN, Pascal AA, van Grondelle R, Walla PJ, Ruban AV, Robert B (2011) Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II. J Biol Chem 286(31):27247–27254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irrgang K-D, Renger G, Vater J (1991) Isolation, purification and partial characterization of a 30-kDa chlorophyll-a/b-binding protein from spinach. Eur J Biochem 201(2):515–522

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll in LHC II. J Biol Chem 284:23592–23601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovács L, Damkjær J, Kereïche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18(11):3106–3120

    Article  PubMed Central  PubMed  Google Scholar 

  • Krüger TP, Ilioaia C, Johnson MP, Belgio E, Horton P, Ruban AV, van Grondelle R (2013) The specificity of controlled protein disorder in the photoprotection of plants. Biophys J 105(4):1018–1026

    Article  PubMed Central  PubMed  Google Scholar 

  • Kühlbrandt W, Thaler T, Wehrli E (1983) The structure of membrane crystals of the light harvesting chlorophyll a/b protein complex. J Cell Biol 96:1414–1424

    Article  PubMed  Google Scholar 

  • Liao PN, Bode S, Wilk L, Hafi N, Walla PJ (2010a) Correlation of electronic carotenoid-chlorophyll interaction and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants. Chem Phys 373:50–55

    Article  CAS  Google Scholar 

  • Liao PN, Holleboom CP, Wilk L, Kühlbrandt W, Walla PJ (2010b) Correlation of Car S1 → Chl with Chl → Car S1 energy transfer supports the excitonic model in quenched light harvesting complex II. J Phys Chem B 114:15650–15655

    Article  CAS  PubMed  Google Scholar 

  • Liao PN, Pillai S, Gust D, Moore TA, Moore AL, Walla PJ (2011) Two-photon study on the electronic interactions between the first excited singlet states in carotenoid-tetrapyrrole dyads. J Phys Chem A 115:4082–4091

    Article  CAS  PubMed  Google Scholar 

  • Liao PN, Pillai S, Kloz M, Gust D, Moore A, Moore T, Kennis J, van Grondelle R, Walla P (2012) On the role of excitonic interactions in carotenoid–phthalocyanine dyads and implications for photosynthetic regulation. Photosynth Res 111(1):237–243

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorometer. Photosynthetica 43(3):379–393

    Article  CAS  Google Scholar 

  • Liu Z, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582(25–26):3625–3631

    Article  CAS  PubMed  Google Scholar 

  • Mozzo M, Dall’Osto L, Hienerwadel R, Bassi R, Croce R (2008a) Photoprotection in the antenna complexes of photosystem II. J Biol Chem 283:6184–6192

    Article  CAS  PubMed  Google Scholar 

  • Mozzo M, Passarini F, Bassi R, van Amerongen H, Croce R (2008b) Photoprotection in higher plants: the putative quenching site is conserved in all outer light-harvesting complexes of Photosystem II. Biochim Biophys Acta 1777:1263–1267

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem 11:1289–1296

    Article  PubMed  Google Scholar 

  • Natali A, Roy LM, Croce R (2014) In vitro reconstitution of light-harvesting complexes of plants and green algae. J Vis Exp 92:e51852

    PubMed  Google Scholar 

  • Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16(3):307–314

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18(3):309–315

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou G, Govindjee (2014) The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: definitions, timelines, viewpoints, open questions. In: Demmig-Adams B, Garab G, Adams W III, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, vol 40. Springer, Dordrecht, pp 1–44

    Google Scholar 

  • Pascal A, Gradinaru C, Wacker U, Peterman E, Calkoen F, Irrgang K-D, Horton P, Renger G, van Grondelle R, Robert B, van Amerongen H (1999) Spectroscopic characterization of the spinach Lhcb4 protein (CP29), a minor light-harvesting complex of photosystem II. Eur J Biochem 262(3):817–823

    Article  CAS  PubMed  Google Scholar 

  • Pascal AA, Liu Z, Broess K, Bv Oort, Hv Amerongen, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    Article  CAS  PubMed  Google Scholar 

  • Passarini F, Wientjes E, Hienerwadel R, Croce R (2009) Molecular basis of light harvesting and photoprotection in CP24. J Biol Chem 284:29536–29546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passarini F, Xu P, Caffarri S, Hille J, Croce R (2014) Towards in vivo mutation analysis: knock-out of specific chlorophylls bound to the light-harvesting complexes of Arabidopsis thaliana—the case of CP24 (Lhcb6). Biochim Biophys Acta, Bioenerg 1837(9):1500–1506

    Article  CAS  Google Scholar 

  • Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–579

    Article  CAS  PubMed  Google Scholar 

  • Sauer K, Lindsay Smith JR, Schultz AJ (1966) The dimerization of chlorophyll a, chlorophyll b, and bacteriochlorophyll in solution. J Am Chem Soc 88(12):2681–2688

    Article  CAS  Google Scholar 

  • Schmid V (2008) Light-harvesting complexes of vascular plants. Cell Mol Life Sci 65(22):3619–3639

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Ilagan RP, Gillespie N, Sommer BJ, Hiller RG, Sharples FP, Frank HA, Birge RR (2003) Two-photon and fluorescence spectroscopy and the effect of environment on the photochemical properties of peridinin in solution and in the peridinin-chlorophyll-protein from Amphidinium carterae. J Phys Chem A 107:8052–8066

    Article  CAS  Google Scholar 

  • Shreve AP, Trautman JK, Owens TG, Albrecht AC (1990) Two-photon excitation spectroscopy of thylakoid membranes from Phaeodactylum tricornutum: evidence for an in vivo two-photon-allowed carotenoid state. Chem Phys Lett 170(1):51–56

    Article  CAS  Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light harvesting complex at 2.5Å resolution. EMBO J 24:919–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Amerongen H, van Grondelle R (2001) Understanding the energy transfer function of LHCII, the major light harvesting complex of green plants. J Phys Chem B 105(3):604–617

    Article  Google Scholar 

  • van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007) Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581:3528–3532

    Article  PubMed  Google Scholar 

  • van Oort B, Alberts M, de Bianchi S, Dall’Osto L, Bassi R, Trinkunas G, Croce R, van Amerongen H (2010) Effect of antenna-depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophys J 98(5):922–931

    Article  PubMed Central  PubMed  Google Scholar 

  • Wahadoszamen M, Berera R, Ara A, Romero E, Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14(2):759–766

    Article  CAS  PubMed  Google Scholar 

  • Walla PJ, Linden PA, Fleming GR (2000a) Fs-transient absorption and fluorescence upconversion after two-photon excitation of carotenoids in solution and in LHC II. In: Elsaesser T, Mukamel S, Murmane M, Scherer NF (eds) Ultrafast Phenomena XII. Springer, New York, pp 671–673

    Google Scholar 

  • Walla PJ, Linden PA, Hsu CP, Scholes GD, Fleming GR (2000b) Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. Proc Natl Acad Sci USA 97(20):10808–10813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walla PJ, Yom J, Krueger BP, Fleming GR (2000c) Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids. J Phys Chem B 104(19):4799–4806

    Article  CAS  Google Scholar 

  • Walla PJ, Linden PA, Ohta K, Fleming GR (2002) Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and b-carotene in solution: efficient Car S1 → Chl electronic energy transfer via hot S1 states? J Phys Chem A 106(10):1909–1916

    Article  CAS  Google Scholar 

  • Wehling A, Walla PJ (2005) Timeresolved two-photon spectroscopy of PS I determines hidden energy path ways. J Phys Chem B 109:24510–24516

    Article  CAS  PubMed  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta 1827(3):420–426

    Article  CAS  PubMed  Google Scholar 

  • Young AJ, Frank HA (1996) Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J Photochem Photobiol B 36:3–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was generously supported by a grant of the German Science Foundation (DFG, WA1305/3-2) and by the Dutch organization for Scientific research, division Earth and Life Sciences (NWO-ALW) via a Vici grant to RC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jomo Walla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holleboom, CP., Gacek, D.A., Liao, PN. et al. Carotenoid–chlorophyll coupling and fluorescence quenching in aggregated minor PSII proteins CP24 and CP29. Photosynth Res 124, 171–180 (2015). https://doi.org/10.1007/s11120-015-0113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0113-1

Keywords

Navigation