Skip to main content

Advertisement

Log in

Chromophore composition of the phycobiliprotein Cr-PC577 from the cryptophyte Hemiselmis pacifica

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The cryptophyte phycocyanin Cr-PC577 from Hemiselmis pacifica is a close relative of Cr-PC612 found in Hemiselmis virescens and Hemiselmis tepida. The two biliproteins differ in that Cr-PC577 lacks the major peak at around 612 nm in the absorption spectrum. Cr-PC577 was thus purified and characterized with respect to its bilin chromophore composition. Like other cryptophyte phycobiliproteins, Cr-PC577 is an (αβ)(α′β) heterodimer with phycocyanobilin (PCB) bound to the α-subunits. While one chromophore of the β-subunit is also PCB, mass spectrometry identified an additional chromophore with a mass of 585 Da at position β-Cys-158. This mass can be attributed to either a dihydrobiliverdin (DHBV), mesobiliverdin (MBV), or bilin584 chromophore. The doubly linked bilin at position β-Cys-50 and β-Cys-61 could not be identified unequivocally but shares spectral features with DHBV. We found that Cr-PC577 possesses a novel chromophore composition with at least two different chromophores bound to the β-subunit. Overall, our data contribute to a better understanding of cryptophyte phycobiliproteins and furthermore raise the question on the biosynthetic pathway of cryptophyte chromophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AmSO4 :

Ammonium sulfate

BLAST:

Basic Local Alignment Search Tool

CCMP:

Provasoli-Guillard Culture Collection for the Culture of Marine Phytoplankton (now NCMA, National Center for Marine Algae and Microbiota East Boothbay Maine, USA)

DHBV:

Dihydrobiliverdin

DMSO:

Dimethylsulfoxid

ESI:

Electrospray ionization

FDBR:

Ferredoxin-dependent bilin reductase

HPLC:

High performance liquid chromatography

MBV:

Mesobiliverdin

MES:

2-(N-morpholino)ethanesulfonic acid

MS:

Mass spectrometry

PBP:

Phycobiliprotein

PCB:

Phycocyanobilin

PEB:

Phycoerythrobilin

SDS-PAGE:

Sodium dodecylsulfate polyacrylamide gel electrophoresis

TFA:

Trifluoroacetic acid

References

  • Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248(1):79–96

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18(11):577–584

    Article  CAS  PubMed  Google Scholar 

  • Beale SI, Cornejo J (1991a) Biosynthesis of phycobilins. 3(Z)-Phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IXα. J Biol Chem 266:22333–22340

    CAS  PubMed  Google Scholar 

  • Beale SI, Cornejo J (1991b) Biosynthesis of phycobilins. 15,16-Dihydrobiliverdin IXα is a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J Biol Chem 266:22341–22345

    CAS  PubMed  Google Scholar 

  • Berkelman TR, Lagarias JC (1986) Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal Biochem 156(1):194–201

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26(1):50–60

    Article  PubMed  Google Scholar 

  • Broughton MJ, Howe CJ, Hiller RG (2006) Distinctive organization of genes for light-harvesting proteins in the cryptophyte alga Rhodomonas. Gene 369:72–79

    Article  CAS  PubMed  Google Scholar 

  • Collini E, Wong CY, Wilk KE, Curmi PM, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281):644–647

    Article  CAS  PubMed  Google Scholar 

  • Crespi HL, Smith UH (1970) The chromophore-protein bonds in phycocyanin. Phytochem 9(1):205–212

    Article  CAS  Google Scholar 

  • Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Obornik M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Hoppner MP, Ishida K, Kim E, Koreny L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492(7427):59–65

    Article  CAS  PubMed  Google Scholar 

  • Dammeyer T, Frankenberg-Dinkel N (2006) Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J Biol Chem 281(37):27081–27089

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410(6832):1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Edman P, Begg G (1967) A protein sequenator. Eur J Biochem 1(1):80–91

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg N, Lagarias JC (2003) Phycocyanobilin:ferredoxin oxidoreductase of Anabaena sp. PCC 7120. Biochemical and spectroscopic characterization. J Biol Chem 278(11):9219–9226

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13(4):965–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glazer AN, Wedemayer GJ (1995) Cryptomonad biliproteins—An evolutionary perspective. Photosynth Res 46(1–2):93–105

    Article  CAS  PubMed  Google Scholar 

  • Guard-Friar D, MacColl R (1986) Subunit separation (alpha, alpha’, beta) of cryptomonad biliproteins. Photochem Photobiol 43(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden K (2008) Molecular phylogeny of phycocyanin-containing cryptophytes: evolution of biliproteins and geographical distribution. J Phycol 44(4):985–993

    Article  Google Scholar 

  • Ingram K, Hiller RG (1983) Isolation and characterization of a major chlorophyll ac2 light-harvesting protein from a Chroomonas species (Cryptophyceae). Biochimica et Biophysica Acta (BBA)-Bioenergetics 722(2):310–319

    Article  CAS  Google Scholar 

  • Jenkins J, Hiller RG, Speirs J, Godovac-Zimmermann J (1990) A genomic clone encoding a cryptophyte phycoerythrin alpha-subunit. Evidence for three alpha-subunits and an N-terminal membrane transit sequence. FEBS Lett 273(1–2):191–194

    Article  CAS  PubMed  Google Scholar 

  • Lamparter T, Esteban B, Hughes J (2001) Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803. Purification, assembly, and quaternary structure. Eur J Biochem 268(17):4720–4730

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, Archibald JM (2008) New marine members of the genus Hemiselmis (Cryptomonadales, Cryptophyceae)1. J Phycol 44(2):439–450

    Article  CAS  Google Scholar 

  • Marin A, Doust AB, Scholes GD, Wilk KE, Curmi PM, van Stokkum IH, van Grondelle R (2011) Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645. Biophys J 101(4):1004–1013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Provasoli L, McLaughlin JJ, Droop MR (1957) The development of artificial media for marine algae. Arch Microbiol 25(4):392–428

    CAS  Google Scholar 

  • Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379

    Article  CAS  PubMed  Google Scholar 

  • Sidler W, Nutt H, Kumpf B, Frank G, Suter F, Brenzel A, Wehrmeyer W, Zuber H (1990) The complete amino-acid sequence and the phylogenetic origin of phycocyanin-645 from the cryptophytan alga Chroomonas sp. Biol Chem Hoppe Seyler 371(7):537–547

    Article  CAS  PubMed  Google Scholar 

  • Spear-Bernstein L, Miller KR (1989) Unique location of the phycobiliprotein light-harvesting pigment in the Cryptophyceae. J Phycol 25(3):412–419

    Article  CAS  Google Scholar 

  • Terry MJ, Maines MD, Lagarias JC (1993) Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem 268(35):26099–26106

    CAS  PubMed  Google Scholar 

  • van der Weij-De Wit CD, Doust AB, van Stokkum IHM, Dekker JP, Wilk KE, Curmi PMG, van Grondelle R (2008) Phycocyanin Sensitizes both Photosystem I and Photosystem II in Cryptophyte Chroomonas CCMP270 Cells. Biophys J 94(6):2423–2433

    Article  PubMed Central  PubMed  Google Scholar 

  • Wedemayer GJ, Kidd DG, Wemmer DE, Glazer AN (1992) Phycobilins of cryptophycean algae. Occurrence of dihydrobiliverdin and mesobiliverdin in cryptomonad biliproteins. J Biol Chem 267(11):7315–7331

    CAS  PubMed  Google Scholar 

  • Wedemayer G, Kidd D, Glazer A (1996) Cryptomonad biliproteins: bilin types and locations. Photosynth Res 48(1–2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Wemmer DE, Wedemayer GJ, Glazer AN (1993) Phycobilins of cryptophycean algae. Novel linkage of dihydrobiliverdin in a phycoerythrin 555 and a phycocyanin 645. J Biol Chem 268(3):1658–1669

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KEO was supported by a PhD scholarship from the Studienstiftung des Deutschen Volkes e.V. whose support is kindly acknowledged. JEB acknowledges financial support for the Synapt G2-S mass spectrometer by the state of North Rhine Westphalia (Forschungsgroßgeräte der Länder) and NFD was supported by the German Research Foundation (DFG). KHE wishes to thank Prof. Michael Melkonian for access to lab and culturing facilities. We would like to thank Dr. Dirk Heinz and colleagues, Helmholtz Centre for Infection Research, Braunschweig, Germany for their help with N-terminal sequencing. Thanks are also due to Dr. Jessica Jordan for initial help with the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Frankenberg-Dinkel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overkamp, K.E., Langklotz, S., Aras, M. et al. Chromophore composition of the phycobiliprotein Cr-PC577 from the cryptophyte Hemiselmis pacifica . Photosynth Res 122, 293–304 (2014). https://doi.org/10.1007/s11120-014-0029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0029-1

Keywords

Navigation