Skip to main content
Log in

On \(L_{p}-\) Theory for Integro-Differential Operators with Spatially Dependent Coefficients

  • Research
  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

The parabolic integro-differential Cauchy problem with spatially dependent coefficients is considered in generalized Bessel potential spaces where smoothness is defined by Lévy measures with O-regularly varying profile. The coefficients are assumed to be bounded and Hölder continuous in the spatial variable. Our results can cover interesting classes of Lévy measures that go beyond those comparable to \(dy/\left| y\right| ^{d+\alpha }.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aljančić, S., Arandeloviċ, D.: O -Regularly Varying Functions. PIMB (NS) 22(36), 5–22 (1977)

  2. Mikulevičius, R.: Properties of solutions of stochastic differential equations. Lith. Math. J. 23(4), 367–376 (1983)

    Article  MathSciNet  Google Scholar 

  3. Mikulevičius, R., Xu, F.: On the Cauchy problem for non-degenerate parabolic integro-differential equations in the scale of generalized Hölder spaces. Potential Anal. 53(3), 839–870 (2020)

    Article  MathSciNet  Google Scholar 

  4. Mikulevičius, R., Phonsom, C.: On \(L_{p}\)-theory for parabolic and elliptic integro-differential equations with scalable operators in the whole space. Stoch PDE: Anal Comp. 5(4), 427–519 (2017)

  5. Mikulevičius, R., Phonsom, C.: On the Cauchy problem for integro-differential equations in the scale of spaces of generalized smoothness. Potential Anal. 50(3), 467–519 (2018)

    Article  MathSciNet  Google Scholar 

  6. Mikulevičius, R., Phonsom, C.: On the Cauchy problem for stochastic integro-differential equations with radially O-regularly varying Lévy measure. Stoch PDE: Anal Comp. 9(2), 380–436 (2021)

    Article  Google Scholar 

  7. Mikulevičius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Sobolev classes and the martingale problem. J. Differ. Equ. 256(4), 1581–1626 (2014)

    Article  MathSciNet  Google Scholar 

  8. Mikulevičius, R., Pragarauskas, H.: On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces. Lith. Math. J. 32(2), 238–264 (1992)

    Article  Google Scholar 

  9. Dong, H., Kim, D.: On \(L_{p}\)- estimates of non-local elliptic equations. J. Funct. Anal. 262(3), 1166–1199 (2012)

    Article  MathSciNet  Google Scholar 

  10. Dong, H., Jung, P., Kim, D.: Boundedness of non-local operators with spatially dependent coefficients and \(L_{p}\) -estimates for non-local equations. Calc. Var. 62(2), 62 (2023). https://doi.org/10.1007/s00526-022-02392-4

    Article  Google Scholar 

  11. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  12. Stein, E.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  13. Kulczycki, T., Ryznar, M.: Gradient estimates of harmonic functions and transition densities for Lévy processes. Trans. Amer. Math. Soc. 368(1), 281–318 (2016)

    Article  MathSciNet  Google Scholar 

  14. Cho, S., Kang, J., Kim, P.: Estimates of Dirichlet heat kernels for unimodal Lévy processes with low intensity of small jumps. J. London Math. Soc. 104(2), 823–864 (2021)

    Article  MathSciNet  Google Scholar 

  15. Kang, J., Park, D.: An \(L_{q}\left(L_{p}\right)\)-theory for time-fractional diffusion equations with nonlocal operators generated by Lévy processes with low intensity of small jumps. (2022). https://doi.org/10.48550/arXiv.2110.01800

  16. Choi, J.-H., Kang, J., Park, D.: A regularity theory for parabolic equations with anisotropic non-local operators in \(L_{q}\left(L_{p}\right)\) spaces. (2023). https://doi.org/10.48550/arXiv.2308.00347

  17. Coifman, R.: Distribution function inequalities for singular integrals. Proc. Nat. Acad. Sci. U.S.A. 69(10), 2838–2839 (1972)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Coifman, R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51(3), 241–250 (1974)

    Article  MathSciNet  Google Scholar 

  19. Karamata, J.: Sur un mode de Croissance reguliére des fonctions. Mathematica (Cluj) 4, 38–53 (1930)

    Google Scholar 

  20. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  21. Zhang, X.: \(L_{p}\)- solvability of nonlocal parabolic equations with spatial dependent and non-smooth kernels. In: Emerging Topics on Differential Equations and Their Applications. Nankai Series in Pure, Applied Mathematics and Theoretical Physics. 10, 247–262. World Scientific (2013). https://doi.org/10.1142/9789814449755_0020

  22. Zhang, X.: \(L^{p}\)- maximal regularity of nonlocal parabolic equations and applications. Ann. I. H. Poincaré 30(4), 573–614 (2013)

    Article  ADS  CAS  Google Scholar 

  23. Kim, I., Kim, K.-H.: An \(L_{p}\)-theory for a class of non-local elliptic equations related to nonsymmetric measurable kernels. J. Math. Anal. Appl. 434(2), 1302–1335 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kim, I., Kim, K.-H., Kim, P.: An \(L_{p}\)-theory for diffusion equations related to stochastic processes with non-stationary independent increment. Trans. Amer. Math. Soc. 371(7), 3417–3450 (2019)

    MathSciNet  Google Scholar 

  25. Dellacherie, C., Meyer, P.-A.: Probabilities and Potential, vol. 1. North-Holland (1978)

  26. Choi, J.-H., Kim, I.: A maximal \(L_{p}\) -regularity theory to initial value problems with time measurable nonlocal operators generated by additive processes. Stoch. PDE: Anal. Comp. (2023). https://doi.org/10.1007/s40072-023-00286-w

  27. Farkas, W., Jacob, N., Schilling, R.L.: Function spaces related to continuous negative definite functions: \(\psi \) -Bessel potential spaces. Diss. Math. 393, 1–62 (2001)

    MathSciNet  Google Scholar 

  28. Dong, H., Liu, Y.: Sobolev estimates for fractional parabolic equations with space-time non-local operators. Calc. Var. 62(3), 96 (2023). https://doi.org/10.1007/s00526-023-02431-8

    Article  MathSciNet  Google Scholar 

  29. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC, New York (2004)

    Google Scholar 

  30. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1983)

    Google Scholar 

Download references

Funding

This research was funded by College of Industrial Technology, King Mongkut’s University of Technology North Bangkok (Grant No. Res-CIT0625/2023).

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally.

Corresponding author

Correspondence to Chukiat Saksurakan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We collect some results on O-RV functions which are used frequently in this paper. Some results are taken from [3, 6] and slightly modified for our need.

Lemma 14

([6, Lemma 1]) Assume \(w\left( r\right) ,r>0,\) is an O-RV function at zero and infinity with indices \(p_{1},q_{1},p_{2},q_{2}\) defined in (2.2), (2.3), and \(p_{1},p_{2}>0.\) Then for any \(\alpha _{1}>q_{1}\vee q_{2}\), \(0<\alpha _{2}<p_{1}\wedge p_{2}\), there exist \(c_{1}=c_{1}\left( \alpha _{1}\right) ,c_{2}=c_{2}\left( \alpha _{2}\right) >0\) such that

$$\begin{aligned} c_{1}\left( \frac{y}{x}\right) ^{\alpha _{2}}\le \frac{w\left( y\right) }{w\left( x\right) }\le c_{2}\left( \frac{y}{x}\right) ^{\alpha _{1}},0<x\le y<\infty . \end{aligned}$$

Lemma 15

([3, Lemma 8]) Assume \(w\left( r\right) ,r>0,\) is an O-RV function at zero with lower and upper indices \(p_{1},q_{1},\) that is,

$$\begin{aligned} r_{1}\left( x\right) =\overline{\lim _{\varepsilon \rightarrow 0}}\frac{w\left( \epsilon x\right) }{w\left( \epsilon \right) }<\infty ,x>0, \end{aligned}$$

and

$$\begin{aligned} p_{1}=\lim _{\epsilon \rightarrow 0}\frac{\log r_{1}\left( \epsilon \right) }{\log \epsilon }\le q_{1}=\lim _{\epsilon \rightarrow \infty }\frac{\log r_{1}\left( \epsilon \right) }{\log \left( \epsilon \right) }. \end{aligned}$$
  1. (i)

    Let \(\beta >0\) and \(\tau >-\beta p_{1}.\) There is \(C>0\) so that

    $$\begin{aligned} \int _{0}^{x}t^{\tau }w\left( t\right) ^{\beta }\frac{dt}{t}\le Cx^{\tau }w\left( x\right) ^{\beta },x\in (0,1], \end{aligned}$$

    and \(\lim _{x\rightarrow 0}x^{\tau }w\left( x\right) ^{\beta }=0.\)

  2. (ii)

    Let \(\beta >0\) and \(\tau <-\beta q_{1}\). There is \(C>0\) so that

    $$\begin{aligned} \int _{x}^{1}t^{\tau }w\left( t\right) ^{\beta }\frac{dt}{t}\le Cx^{\tau }w\left( x\right) ^{\beta },x\in (0,1],\text { } \end{aligned}$$

    and \(\lim _{x\rightarrow 0}x^{\tau }w\left( x\right) ^{\beta }=\infty .\)

  3. (iii)

    Let \(\beta <0\) and \(\tau >-\beta q_{1}\). There is \(C>0\) so that

    $$\begin{aligned} \int _{0}^{x}t^{\tau }w\left( t\right) ^{\beta }\frac{dt}{t}\le Cx^{\tau }w\left( x\right) ^{\beta },x\in (0,1], \end{aligned}$$

    and \(\lim _{x\rightarrow 0}x^{\tau }w\left( x\right) ^{\beta }=0.\)

  4. (iv)

    Let \(\beta <0\) and \(\tau <-\beta p_{1}\). There is \(C>0\) so that

    $$\begin{aligned} \int _{x}^{1}t^{\tau }w\left( t\right) ^{\beta }\frac{dt}{t}=\int _{1}^{x^{-1}}t^{-\tau }w\left( \frac{1}{t}\right) ^{\beta }\frac{dt}{t}\le Cx^{\tau }w\left( x\right) ^{\beta },x\in (0,1], \end{aligned}$$

    and \(\lim _{x\rightarrow 0}x^{\tau }w\left( x\right) ^{\beta }=\infty .\)

Similar statement holds for O-RV functions at infinity.

Lemma 16

([6, Lemma 3]) Assume \(w\left( r\right) ,r>0,\) is an O-RV function at infinity with lower and upper indices \(p_{2},q_{2},\) that is,

$$\begin{aligned} r_{2}\left( x\right) =\overline{\lim _{\varepsilon \rightarrow \infty }}\frac{w\left( \epsilon x\right) }{w\left( \epsilon \right) }<\infty ,x>0, \end{aligned}$$

and

$$\begin{aligned} p_{2}=\lim _{\epsilon \rightarrow 0}\frac{\log r_{2}\left( \epsilon \right) }{\log \epsilon }\le q_{2}=\lim _{\epsilon \rightarrow \infty }\frac{\log r_{2}\left( \epsilon \right) }{\log \left( \epsilon \right) }. \end{aligned}$$
  1. (i)

    Let \(\beta >0\) and \(-\tau >\beta q_{2}.\) There is \(C>0\) so that

    $$\begin{aligned} \int _{x}^{\infty }t^{\tau }w\left( t\right) ^{\beta }\frac{dt}{t}\le Cx^{\tau }w\left( x\right) ^{\beta },x\in [1,\infty ), \end{aligned}$$

    and \(\lim _{x\rightarrow \infty }x^{\tau }w\left( x\right) ^{\beta }=0.\)

  2. (ii)

    Let \(\beta >0\) and \(-\tau <\beta p_{2}\). There is \(C>0\) so that

    $$\begin{aligned} \int _{1}^{x}t^{\tau }w\left( t\right) ^{\beta }\frac{dt}{t}\le Cx^{\tau }w\left( x\right) ^{\beta },x\in [1,\infty ),\text { } \end{aligned}$$

    and \(\lim _{x\rightarrow \infty }x^{\tau }w\left( x\right) ^{\beta }=\infty .\)

  3. (iii)

    Let \(\beta <0\) and \(\tau <-\beta p_{2}\). There is \(C>0\) so that

    $$\begin{aligned} \int _{x}^{\infty }t^{\tau }w\left( t\right) ^{\beta }\frac{dt}{t}\le Cx^{\tau }w\left( x\right) ^{\beta },x\in [1,\infty ), \end{aligned}$$

    and \(\lim _{x\rightarrow \infty }x^{\tau }w\left( x\right) ^{\beta }=0.\)

  4. (iv)

    Let \(\beta <0\) and \(\tau >-\beta q_{2}\). There is \(C>0\) so that

    $$\begin{aligned} \int _{1}^{x}t^{\tau }w\left( t\right) ^{\beta }\frac{dt}{t}\le Cx^{\tau }w\left( x\right) ^{\beta },x\in [1,\infty ), \end{aligned}$$

    and \(\lim _{x\rightarrow \infty }x^{\tau }w\left( x\right) ^{\beta }=\infty .\)

Lemma 17

([6, Lemma 5 ]) Let \(w\left( r\right) ,r>0,\) be a continuous, non-decreasing O-RV function at zero and infinity with indices \(p_{1},q_{1},p_{2},q_{2}\) defined in (2.2), (2.3), and \(p_{1},p_{2}>0.\) Let

$$\begin{aligned} a_{1}\left( r\right) =\inf \left\{ t>0:w\left( t\right) \ge r\right\} ,r>0, \end{aligned}$$
$$\begin{aligned} a_{2}\left( r\right) =\inf \left\{ t>0:w\left( t\right)>r\right\} ,r>0. \end{aligned}$$

If a is either \(a_{1}\) or \(a_{2}\), then

  1. (i)

    \(w\left( a\left( t\right) \right) =t,t>0\) and

    $$\begin{aligned} a_{1}\left( w\left( t\right) \right) \le t\le a_{1}\left( w\left( t\right) +\right) ,t>0, \end{aligned}$$
    $$\begin{aligned} a_{2}\left( w\left( t\right) -\right) \le t\le a_{2}\left( w\left( t\right) \right) ,t>0. \end{aligned}$$
  2. (ii)

    a is O-RV at zero and infinity with lower indices \(p,\bar{p}\) and upper indices \(q,\bar{q}\) respectively such that

    $$\begin{aligned} \frac{1}{q_{1}}\le p\le q\le \frac{1}{p_{1}},\frac{1}{q_{2}}\le \bar{p}\le \bar{q}\le \frac{1}{p_{2}}. \end{aligned}$$
  3. (iii)

    \(a\left( w\left( t\right) \right) \asymp t,t>0.\)

Proof

(i) is straightforward, (ii) is proved in [6, Lemma 5 ] and (iii) easily follows from (ii) and Lemma 14. \(\square \)

Corollary 2

([6, Corollary 1]) Let \(w\left( r\right) ,r>0,\) be a continuous, non-decreasing O-RV function at zero and infinity with indices \(p_{1},q_{1},p_{2},q_{2}\) defined in (2.2), (2.3), and \(p_{1},p_{2}>0.\) Let

$$\begin{aligned} a_{1}\left( r\right) =\inf \left\{ t>0:w\left( t\right) \ge r\right\} ,r>0, \end{aligned}$$
$$\begin{aligned} a_{2}\left( r\right) =\inf \left\{ t>0:w\left( t\right)>r\right\} ,r>0. \end{aligned}$$

If a is either \(a_{1}\) or \(a_{2}\), then

  1. (i)

    For any \(\beta >0\) and \(\tau <\frac{\beta }{q_{1}}\wedge \frac{\beta }{q_{2}}\) there is \(C>0\) such that

    $$\begin{aligned} \int _{0}^{r}t^{-\tau }a\left( t\right) ^{\beta }\frac{dt}{t}\le & {} Cr^{-\tau }a\left( r\right) ^{\beta },r>0,\\ \lim _{r\rightarrow 0}r^{-\tau }a\left( r\right) ^{\beta }= & {} 0,\lim _{r\rightarrow \infty }r^{-\tau }a\left( r\right) ^{\beta }=\infty , \end{aligned}$$

    and for any \(\beta <0,\tau >\left( -\frac{\beta }{p_{1}}\right) \vee \left( -\frac{\beta }{p_{2}}\right) \) there is \(C>0\) such that

    $$\begin{aligned} \int _{0}^{r}t^{\tau }a\left( t\right) ^{\beta }\frac{dt}{t}\le & {} Cr^{\tau }a\left( r\right) ^{\beta },r>0,\\ \lim _{r\rightarrow 0}r^{\tau }a\left( r\right) ^{\beta }= & {} 0,\lim _{r\rightarrow \infty }r^{\tau }a\left( r\right) ^{\beta }=\infty . \end{aligned}$$
  2. (ii)

    For any \(\gamma >0\) and \(\tau >\frac{\gamma }{p_{1}}\vee \frac{\gamma }{p_{2}}\) there is \(C>0\) such that

    $$\begin{aligned} \int _{r}^{\infty }t^{-\tau }a\left( t\right) ^{\gamma }\frac{dt}{t}\le & {} Cr^{-\tau }a\left( r\right) ^{\gamma },r>0,\\ \lim _{r\rightarrow 0}r^{-\tau }a\left( r\right) ^{\gamma }= & {} \infty ,\lim _{r\rightarrow \infty }r^{-\tau }a\left( r\right) ^{\gamma }=0, \end{aligned}$$

    and for any \(\gamma <0\) and \(\tau <\left( -\frac{\gamma }{q_{1}}\right) \wedge \left( -\frac{\gamma }{q_{2}}\right) \) there is \(C>0\) such that

    $$\begin{aligned} \int _{r}^{\infty }t^{\tau }a\left( t\right) ^{\gamma }\frac{dt}{t}{} & {} \le Cr^{\tau }a\left( r\right) ^{\gamma },r>0,\\ \lim _{r\rightarrow 0}r^{\tau }a\left( r\right) ^{\gamma }{} & {} = \infty ,\lim _{r\rightarrow \infty }r^{\tau }a\left( r\right) ^{\gamma }=0. \end{aligned}$$

Lemma 18

Let \(\nu \in \mathfrak {A}^{\sigma }\),\(\sigma \in \left[ 1,2\right) \), \(w=w_{\nu }\) be an O-RV function at zero and infinity with indices \(p_{1},q_{1},p_{2},q_{2}\) defined in (2.2), (2.3) and \(p_{1},p_{2}>0\). If \(\frac{\sigma -1}{\left( p_{1}\wedge p_{2}\right) }<\beta <1\) then there exists \(N=N\left( \beta ,\nu \right) >0\) such that

$$\begin{aligned} \int _{\left| y\right| \le 1}\left| y\right| w\left( \left| y\right| \right) ^{\beta }\nu \left( dy\right) \le N. \end{aligned}$$

Proof

Since \(1+\left( p_{1}\wedge p_{2}\right) \beta >\sigma \), we may choose \(0<\alpha <\left( p_{1}\wedge p_{2}\right) \) so that \(1+\alpha \beta >\sigma .\) By Lemma 14 and definition of \(\sigma \),

$$\begin{aligned} \int _{\left| y\right| \le 1}\left| y\right| w\left( \left| y\right| \right) ^{\beta }\nu \left( dy\right) \le N\int _{\left| y\right| \le 1}\left| y\right| ^{1+\alpha \beta }\nu \left( dy\right) \le N. \end{aligned}$$

\(\square \)

Lemma 19

Let \(\nu \left( dy\right) =j_{d}\left( \left| y\right| \right) dy\) and D hold then

$$\begin{aligned} w_{\nu }\left( r\right) \asymp \left( \int _{r}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\right) ^{-1}\asymp \gamma \left( r\right) ,r>0. \end{aligned}$$

Proof

The first estimate follows from the definition of \(w_{\nu }.\) The second estimate follows from basic properties of O-RV functions. With definition of O-RV functions in mind, we consider the function \(\gamma ^{-1}\),

$$\begin{aligned} \limsup _{\epsilon \rightarrow \infty }\frac{\gamma \left( \epsilon x\right) ^{-1}}{\gamma \left( \epsilon \right) ^{-1}}=\limsup _{\epsilon \rightarrow \infty }\frac{\gamma \left( \epsilon \right) }{\gamma \left( \epsilon x\right) }=\limsup _{\epsilon \rightarrow \infty }\frac{\gamma \left( x^{-1}\epsilon x\right) }{\gamma \left( \epsilon x\right) }=r_{2}\left( x^{-1}\right) . \end{aligned}$$

Hence, \(\gamma {}^{-1}\) is an O-RV function at infinity with the lower index of

$$\begin{aligned} p=\lim _{\epsilon \rightarrow 0}\frac{\log r_{2}\left( \epsilon ^{-1}\right) }{\log \epsilon }=-\lim _{\epsilon \rightarrow \infty }\frac{\log r_{2}\left( \epsilon \right) }{\log \epsilon }=-q_{2} \end{aligned}$$

and by a similar calculation the upper index is

$$\begin{aligned} q=-p_{2}. \end{aligned}$$

Similarly, we consider the function \(\gamma \left( x^{-1}\right) ^{-1},x>0,\)

$$\begin{aligned} \limsup _{\epsilon \rightarrow \infty }\frac{\gamma ^{-1}\left( \frac{1}{\epsilon x}\right) }{\gamma ^{-1}\left( \frac{1}{\epsilon }\right) }=\limsup _{\epsilon \rightarrow 0}\frac{\gamma \left( \epsilon \right) }{\gamma \left( \epsilon x^{-1}\right) }=\limsup _{\epsilon \rightarrow 0}\frac{\gamma \left( \epsilon x^{-1}x\right) }{\gamma \left( \epsilon x^{-1}\right) }=r_{2}\left( x\right) . \end{aligned}$$

Therefore, the function \(\gamma \left( x^{-1}\right) ^{-1},x>0\) is an O-RV function at infinity with

$$\begin{aligned} p=p_{2},q=q_{2}. \end{aligned}$$

By applying [1, Theorem 3] with \(\gamma {}^{-1}\), there exists \(N>1\) so that for \(r\ge N\),

$$\begin{aligned} \int _{r}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\asymp \gamma \left( r\right) ^{-1}. \end{aligned}$$
(8.1)

Now we extend the estimate to \(r\in \left[ 1,N\right) \). On one hand, by (8.1) and Lemma 14,

$$\begin{aligned} \int _{r}^{\infty }\frac{1}{\gamma \left( s\right) s}ds= & {} \int _{r}^{N}\frac{1}{\gamma \left( s\right) s}ds+\int _{N}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\\\le & {} C\gamma \left( r\right) ^{-1}\ln \left( N\right) +C\gamma \left( N\right) ^{-1}\\\le & {} C\gamma \left( r\right) ^{-1}. \end{aligned}$$

On the other hand, by Lemma 14,

$$\begin{aligned} \int _{r}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\ge & {} \int _{N}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\ge C\gamma \left( N\right) ^{-1}\\\ge & {} C\gamma \left( r\right) ^{-1}. \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{r}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\asymp \gamma \left( r\right) ^{-1},r\ge 1. \end{aligned}$$
(8.2)

For \(r<1\), we first note that by applying [1, Theorem 3] with \(\gamma \left( x^{-1}\right) ^{-1},x>0\), there exists \(N>1\) so that for \(x\ge N\).

$$\begin{aligned} \int _{1}^{x}\frac{1}{\gamma \left( s^{-1}\right) s}ds\asymp \gamma \left( x^{-1}\right) ^{-1}. \end{aligned}$$
(8.3)

For \(0<r\le \frac{1}{N}\), we change the variable of integration then apply (8.3), (8.2) and Lemma 14,

$$\begin{aligned} \int _{r}^{\infty }\frac{1}{\gamma \left( s\right) s}ds= & {} \int _{r}^{1}\frac{1}{\gamma \left( s\right) s}ds+\int _{1}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\\= & {} \int _{1}^{1/r}\frac{1}{\gamma \left( s^{-1}\right) s}ds+\int _{1}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\\\le & {} C\gamma \left( r\right) ^{-1}. \end{aligned}$$

Moreover,

$$\begin{aligned} \int _{r}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\ge \int _{1}^{1/r}\frac{1}{\gamma \left( s^{-1}\right) s}ds\ge C\gamma \left( r\right) ^{-1}. \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{r}^{\infty }\frac{1}{\gamma \left( s\right) s}ds\asymp \gamma \left( r\right) ^{-1},r\in \left( 0,\frac{1}{N}\right] . \end{aligned}$$
(8.4)

Finally, the estimate for \(r\in \left[ \frac{1}{N},1\right) \) follows from (8.2), (8.4) and Lemma 14. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janreung, S., Siripraparat, T. & Saksurakan, C. On \(L_{p}-\) Theory for Integro-Differential Operators with Spatially Dependent Coefficients. Potential Anal (2024). https://doi.org/10.1007/s11118-024-10131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11118-024-10131-x

Keywords

Mathematics Subject Classification (2010)

Navigation