Skip to main content
Log in

\(p-\)Harmonic Functions in the Upper Half-space

  • Research
  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

This paper investigates the existence, nonexistence, and qualitative properties of p-harmonic functions in the upper half-space \(\mathbb {R}^N_+\) \((N\ge 3)\) satisfying nonlinear boundary conditions for \(1<p<N\). Moreover, the symmetry of positive solutions is shown by using the method of moving planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable

References

  1. Abreu, E., do Ó, J.M., Medeiros, E.: Properties of positive harmonic functions on the half-space with a nonlinear boundary condition. J. Differential Equations 248, 617–637 (2010)

  2. Adams, R., Fournier, J.: Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam (2003)

  3. Aleksandrov, A.: Uniqueness theorems for surfaces in the large. I. Amer. Math. Soc. Transl. 21, 341–354 (1962)

    MathSciNet  Google Scholar 

  4. Alexandrov, A.: A characteristic property of spheres. Ann. Mat. Pura Appl. 58, 303–315 (1962)

    Article  MathSciNet  Google Scholar 

  5. Allegretto, W., Huang, Y.: A Picone’s identity for the \(p\)-Laplacian and applications. Nonlinear Anal. 32, 819–830 (1998)

    Article  MathSciNet  Google Scholar 

  6. Bonder, J., Rossi, J.: Existence results for the \(p\)-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. 263, 195–223 (2001)

    Article  MathSciNet  Google Scholar 

  7. Chipot, M., Chlebík, M., Fila, M., Shafrir, I.: Existence of positive solutions of a semilinear elliptic equation in \(\mathbb{R} ^n_{+}\) with a nonlinear boundary condition. J. Math. Anal. Appl. 223, 429–471 (1998)

    Article  MathSciNet  Google Scholar 

  8. Cuesta, M., Takáč, P.: A strong comparison principle for positive solutions of degenerate elliptic equations. Differential Integral Equations 13, 721–746 (2000)

    Article  MathSciNet  Google Scholar 

  9. Damascelli, L., Pacella, F.: Monotonicity and symmetry of solutions of \(p\)-Laplace equations, \(1<p<2\), via the moving plane method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 689–707 (1998)

  10. Damascelli, L., Sciunzi, B.: Regularity, monotonicity and symmetry of positive solutions of \(m\)-Laplace equations. J. Differential Equations 206, 483–515 (2004)

    Article  MathSciNet  Google Scholar 

  11. Degiovanni, M., Musesti, A., Squassina, M.: On the regularity of solutions in the Pucci-Serrin identity. Calc. Var. Partial Differential Equations 18, 317–334 (2003)

    Article  MathSciNet  Google Scholar 

  12. do Ó, J.M., Medeiros, E.: Remarks on least energy solutions for quasilinear elliptic problems in \(R^N\). Electron. J. Differential Equations (83), 14 pp

  13. Escobar, J.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)

    Article  MathSciNet  Google Scholar 

  14. Farina, A., Montoro, L., Sciunzi, B.: Monotonicity and one-dimensional symmetry for solutions of \(-\Delta _pu=f(u)\) in half-spaces. Calc. Var. Partial Differential Equations 43, 123–145 (2012)

    Article  MathSciNet  Google Scholar 

  15. Farina, A., Montoro, L., Sciunzi, B.: Monotonicity of solutions of quasilinear degenerate elliptic equation in half-spaces. Math. Ann. 357, 855–893 (2013)

    Article  MathSciNet  Google Scholar 

  16. Symmetry and related properties via the maximum principle: Gidas, B., Ni, w-M., Nirenberg, L. Comm. Math. Phys. 68, 209–243 (1979)

    MathSciNet  Google Scholar 

  17. Guo, Y., Liu, X.: A multiple critical points theorem and applications to quasilinear boundary value problems in \(\mathbb{R} ^N_+\). Nonlinear Anal. 75, 3787–3808 (2012)

    Article  MathSciNet  Google Scholar 

  18. J. Harada, J.:Positive solutions to the Laplace equation with nonlinear boundary conditions on the half space. Calc. Var. Partial Differential Equations 50, 399–435 (2014)

  19. Hu, B.: Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition. Differential Integral Equations 7, 301–313 (1994)

    Article  MathSciNet  Google Scholar 

  20. Il’yasov, Y., Takáč, P.: Optimal \(W^{2,2}_{\rm loc}\)-regularity, Pohozhaev’s identity, and nonexistence of weak solutions to some quasilinear elliptic equations. J. Differential Equations 252, 2792–2822 (2012)

    Article  MathSciNet  Google Scholar 

  21. F. Isaia, F.: Superposition operators between Sobolev spaces and a non-existence result of higher-order regular solutions for the \(p\)-Laplacian. Nonlinear Anal. 117, 87–98 (2015)

  22. Li, Y., Zhu, M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80, 383–417 (1995)

    Article  MathSciNet  Google Scholar 

  23. Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

    Article  MathSciNet  Google Scholar 

  24. Lou, H.: On singular sets of local solutions to \(p\)-Laplace equations. Chin. Ann. Math. Ser. B 29, 521–530 (2000)

    Article  MathSciNet  Google Scholar 

  25. Nazaret, B.: Best constant in Sobolev trace inequalities on the half-space. Nonlinear Anal. 65, 1977–1985 (2006)

    Article  MathSciNet  Google Scholar 

  26. Pohožaev, S.: On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\). Dokl. Akad. Nauk SSSR 165, 36–39 (1965)

    MathSciNet  Google Scholar 

  27. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    Article  MathSciNet  Google Scholar 

  28. Pucci, P., Servadei, R.: Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations. Indiana Univ. Math. J. 57, 3329–3363 (2008)

    Article  MathSciNet  Google Scholar 

  29. Serrin, J.: A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  Google Scholar 

  30. Simon, J.: Régularité de la solution d’un problème aux limites non linéaires. Ann. Fac. Sci. Toulouse Math. 5(3), 247–274 (1982)

    Google Scholar 

  31. Terracini, S.: Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions. Differential Integral Equations 8, 1911–1922 (1995)

    Article  MathSciNet  Google Scholar 

  32. Vázquez, J.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  Google Scholar 

  33. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, 24 Birkhäuser Boston, Inc., Boston, MA, (1996)

Download references

Funding

J.M. do Ó acknowledges partial support from CNPq through grants 312340/2021-4 and 429285/2016-7 and Paraíba State Research Foundation (FAPESQ), grant no 3034/2021. E. Medeiros acknowledges partial support from CNPq through grant 308900/2019-7. R. Clemente acknowledges partial support from CNPq through grant 304454/2022-2

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The authors read and approved the final manuscript

Corresponding author

Correspondence to J. M. do Ó.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Ethical Approval

All data generated or analysed during this study are included in this article

Consent to participate

All authors consent to participate in this work

Consent for publication

All authors consent for publication

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, E., Clemente, R., do Ó, J.M. et al. \(p-\)Harmonic Functions in the Upper Half-space. Potential Anal 60, 1383–1406 (2024). https://doi.org/10.1007/s11118-023-10092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-023-10092-7

Keywords

Mathematics Subject Classification (2010)

Navigation