Skip to main content
Log in

Stability Results for Symmetric Jump Processes on Metric Measure Spaces with Atoms

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Consider a symmetric Markovian jump process {Xt} on a metric measure space (M, d, μ). Chen, Kumagai, and Wang recently showed that two-sided heat kernel estimates and the parabolic Harnack inequality are both stable under bounded perturbations of the jumping measure, assuming (M, d, μ) satisfies the volume-doubling and reverse-volume-doubling conditions. These results do not apply if (M, d, μ) is a graph (or more generally, if M contains any atoms x such that μ(x) > 0) because it is impossible for reverse-volume-doubling to hold on a space with atoms. We generalize the results of Chen, Kumagai, and Wang to a larger class of metric measure spaces, including all infinite graphs with volume-doubling. Our main tool is the construction of an “auxiliary space” that smooths out the atoms. We show that many properties transfer from (M, d, μ) to the auxiliary space, and vice versa, including heat kernel estimates, the parabolic Harnack inequality, and their stable characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres, S., Barlow, M. T.: Energy inequalities for cutoff-functions and some applications. J. Reine Angew. Math. 699, 183–215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barlow, M.T., Bass, R.F.: Stability of parabolic Harnack inequalities. Trans. Amer. Math. Soc. 356, 1501–1533 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barlow, M.T., Bass, R.F., Kumagai, T.: Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan 58, 485–519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bendikov, A., Grigor’yan, A., Hu, E., Hu, J.: Heat kernels and non-local Dirichlet forms on ultrametric spaces. Annali della Scuola Normale Superiore de Pisa - Classe di Scienze 22(1), 399–461 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Chen, X., Kumagai, T., Wang, J.: Random conductance models with stable-like jumps: heat kernel estimates and Harnack inequalities. J. Funct. Anal. 279(7), 108656 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on d-sets. Stochastic Process Appl. 108, 27–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab Theory Relat. Fields 140, 277–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z.-Q., Kumagai, T.: A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev. Mat. Iberoamericana 26, 551–589 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.-Q., Kumagai, T., Saloff-Coste, L., Wang, J., Zheng, T.: Long range random walks and associated geometries on groups of polynomial growth. To appear in Annales de l’Institut Fourier. Pre-print: http://www.kurims.kyoto-u.ac.jp/kumagai/PolFDL-submitted.pdf (2018)

  10. Chen, Z.-Q., Kumagai, T., Wang, J.: Stability of heat kernel estimates for symmetric jump processes on metric measure spaces. To appear in Memoirs Amer. Math. Soc. Pre-print: http://www.kurims.kyoto-u.ac.jp/kumagai/HKE_submitted.pdf (2016)

  11. Chen, Z.-Q., Kumagai, T., Wang, J.: Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. To appear in J. European Math. Soc. Pre-print: http://www.kurims.kyoto-u.ac.jp/kumagai/PHI-Arx1.pdf

  12. Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 15, 181–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Second revised and extended edition. De Gruyter Studies in Mathematics. de Gruyter, Berlin (2011)

    Google Scholar 

  14. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. (Russian) Mat. Sb. 182(1), 55–87 (1991). translation in Math. USSR-Sb. 72 (1992), no. 1, 47-77

    MathSciNet  MATH  Google Scholar 

  15. Hadamard, J.: Extension a l’équation de la chaleur d’un théoreme de A. Harnack. Rendiconti del Circolo Matematico di Palermo 3, 337–346 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Axel Harnack, C.-G.: Die Grundlagen der Theorie des logarithmischen Potentiales und der eindeutigen Potentialfunktion in der Ebene, Teubner, Leipzig, Germany. see also The Cornell Library Historical Mathematics Monographs (1887)

  17. Heinonen, J.: Lectures on Analysis on Metric Spaces, Universitext. Springer, New York (2001)

    Book  MATH  Google Scholar 

  18. Kassmann, M.: Harnack inequalities: An introduction. Bound. Value Probl. 2007, 21 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, G., Murugan, M.: Parabolic Harnack inequality implies the existence of jump kernel. To appear in J. Potential Analysis. Pre-print: arXiv:2005.12450

  20. Malmquist, J.: Stability results for symmetric jump processes on metric measure spaces with atoms. Long version: arXiv:2009.10220 (2020)

  21. Murugan, M., Saloff-Coste, L.: Transition probability estimates for long range random walks. New York J Math. 21, 723–757 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Murugan, M., Saloff-Coste, L.: Anomalous threshold behavior of long range random walks. Electron. J Probab. 20(74), 1–21 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Murugan, M., Saloff-Coste, L.: Heat kernel estimates for anomalous heavy-tailed random walks. Ann. Inst. Henri poincaré Probab. Stat. 55(2), 697–719 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pini, B.: Sulla soluzione generalizzata di Wiener per il primo problema di valori al contornonel caso parabolico. Rendiconti del Seminario Matematico della Universita di Padova 23, 422–434 (1954)

    MathSciNet  MATH  Google Scholar 

  25. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities, vol. 2 (1992)

  26. Sturm, K.-T.: Analysis on local Dirichlet spaces II. Gaussian upper bounds for the fundamental solutions of parabolic Harnack equations. Osaka J. Math. 32, 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Sturm, K.-T.: Analysis on local Dirichlet spaces III. The parabolic Harnack inequality. J. Math. Pures Appl. 75, 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

My deepest gratitude goes to Mathav Murugan, for proposing the problem tackled in this paper (originally as a Masters Essay under his supervision), teaching me a great amount so that I could understand the necessary background information for it, and offering invaluable feedback throughout the writing process. I would also like to thank the reviewer for their helpful comments, and for suggesting I include the implication of Hölder continuity in Theorem 1.21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Malmquist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Domains of the Regular Dirichlet Forms

Appendix A: Domains of the Regular Dirichlet Forms

In this appendix we prove Proposition 8.3 and Lemma 8.4. In some cases, we include more detailed version of these proofs in [20, Appendix A].

We use the notation ∥fp for the Lp-norm of a function f, regardless of whether f is a function on M or \(\widehat {M}\). It follows from Eq. 3.13 that for any \(g \in \mathcal {F}\),

$$ \|g \circ \pi\|_{2} = \|g\|_{2}, \qquad \widehat{\mathcal{E}}(g \circ \pi) = \mathcal{E}(g), \qquad\text{and} \qquad \widehat{\mathcal{E}}_{1}(g \circ \pi) = \mathcal{E}_{1}(g). $$
(A.1)

We use Eq. A.1 to easily prove Proposition 8.3(a), but first let us briefly recall how \(\widehat {\mathcal {F}}\) was defined. In Section 3.3, we defined the bilinear form \(\widehat {\mathcal {E}}\) (given by Eq. 3.28) on a subset \(\widehat {\mathcal {F}}_{\max \limits }\) of \(L^{2}(\widehat {M}, \widehat {\mu })\). We defined the \(\widehat {\mathcal {E}}_{1}\)-norm on \(\widehat {\mathcal {F}}_{\max \limits }\). by Eq. 3.29. We then constructed a set \(\widehat {\mathcal {D}} \subseteq \widehat {\mathcal {F}}_{\max \limits }\) in Definition 3.4, defined \(\widehat {\mathcal {E}}\) as the \(\widehat {\mathcal {E}}_{1}\)-closure of \(\widehat {\mathcal {D}}\), and used Lemma 2.2 to show that \((\widehat {\mathcal {E}}, \widehat {\mathcal {F}})\) was a regular Dirichlet form.

Proof of Proposition 8.3(a)

Recall that \(\mathcal {F} \cap C_{c}(M)\) is a core of \((\mathcal {E}, \mathcal {F}\)), and is therefore dense in \(\mathcal {F}\) under the \(\mathcal {E}_{1}\)-norm. Let {gn} be a sequence in \(\mathcal {F} \cap C_{c}(M)\) such that \(\|g_{n} - g\|_{\mathcal {E}_{1}} \to 0\). By Definition 3.4, \(g_{n} \circ \pi \in \widehat {\mathcal {D}}\) for all n. By Eq. A.1,

$$ \|(g_{n} \circ \pi) - (g \circ \pi)\|_{\widehat{\mathcal{E}}_{1}} = \|(g_{n} - g) \circ \pi\|_{\widehat{\mathcal{E}}_{1}} = \|g_{n} - g\|_{\mathcal{E}_{1}} \to 0. $$
(A.2)

Recall that \(\widehat {\mathcal {F}}\) is defined as the \(\widehat {\mathcal {E}}_{1}\)-closure of \(\widehat {\mathcal {D}}\). Since \(g_{n} \circ \pi \in \widehat {\mathcal {D}}\) for all n, Eq. A.2 means that \(g \circ \pi \in \widehat {\mathcal {F}}\). □

Now let us prove Lemma 8.4. Note that if ξ and η are random variables with finite second moment, the reverse triangle inequality gives

$$ \left| \|\xi\|_{2} - \|\eta\|_{2} \right| \leq \|\xi-\eta\|_{2}. $$
(A.3)

Proof of Lemma 8.4

If

$$ \begin{array}{@{}rcl@{}} \alpha_{1} &:=& {\int}_{E_{1}} {\int}_{E_{2}} (f_{\text{mean}}(x)-f_{\text{mean}}(y))^{2} g(x, y) \mu(dy) \mu(dx),\\ \alpha_{2} &:=& {\int}_{E_{1}} {\int}_{E_{2}} (f_{\text{rms}}(x)-f_{\text{rms}}(y))^{2} g(x, y) \mu(dy) \mu(dx),\\ \text{and} \qquad \beta &:=&{\int}_{\pi^{-1}(E_{1})} {\int}_{\pi^{-1}(E_{2})} (f(z)-f(z^{\prime}))^{2} g(\pi(z), \pi(z^{\prime})) \widehat{\mu}(dz^{\prime}) \widehat{\mu}(dz), \end{array} $$

then α1β by Jensen’s inequality and α2β by Eq. A.3. □

We still need to prove that for a function \(f \in \widehat {\mathcal {F}}\), both fmean and frms belong to \(\mathcal {F}\). For the proof of \(f_{\text {mean}} \in \mathcal {F}\), we will construct a sequence \(\{f_{n}\} \subseteq \widehat {\mathcal {D}}\) such that fnf in the \(\widehat {\mathcal {E}}_{1}\)-norm, and show that \(\{ (f_{n})_{\text {mean}} \} \subseteq \mathcal {F}\) and (fn)meanfmean in the \(\mathcal {E}_{1}\)-norm. By comparing \(\mathcal {E}((f_{\text {mean}})_{n} - f_{\text {mean}})\) to \(\widehat {\mathcal {E}}_{1}(f_{n}-f)\), we conclude that \(f_{\text {mean}} \in \mathcal {F}\).

Remark A.1

Suppose \(f \in L^{2}(\widehat {M}, \widehat {\mu })\). By Jensen’s inequality, ∥fmean2 ≤∥f2. By Lemma 8.4, \(\mathcal {E}(f_{\text {mean}}) \leq \mathcal {E}(f)\). Consequently, \(\mathcal {E}_{1}(f_{\text {mean}}) \leq \widehat {\mathcal {E}}(f)\).

Proof of Proposition 8.3(b)

Recall that \(\widehat {\mathcal {F}}\) is defined as the \(\widehat {\mathcal {E}}_{1}\)-closure of \(\widehat {\mathcal {D}}\). Since \(f \in \widehat {\mathcal {F}}\), there exists a sequence \(\{f_{n}\} \subseteq \widehat {\mathcal {D}}\) such that fnf in the \(\widehat {\mathcal {E}}_{1}\)-norm.

For all n, by the definition of \(\widehat {\mathcal {D}}\), fn has a representation of the form

$$ f_{n} = (g_{n} \circ \pi) + \sum\limits_{j=1}^{N_{n}} H_{{x^{n}_{j}}, {h^{n}_{j}}} $$
(A.4)

where \(g_{n} \in \mathcal {F} \cap C_{c}(M)\), Nn is a non-negative integer, and \({x^{n}_{j}} \in M_{A}\) and \({h^{n}_{j}} \in \tilde {\mathcal {D}}\) for all 1 ≤ jNn.

By taking averages over each Wx, Eq. A.4 gives

$$ (f_{n})_{\text{mean}} = g_{n} + \sum\limits_{j=1}^{N_{n}} \left( {\int}_{W} {h^{n}_{j}} d\nu\right) \delta_{x_{j}}. $$
(A.5)

For all n, gn belongs to \(\mathcal {F}\) by construction, and each \(\delta _{{x^{n}_{j}}}\) belongs to \(\mathcal {F} \cap C_{c}(M)\) by Lemma 2.4(a). Thus, by Eq. A.5, \((f_{n})_{\text {mean}} \in \mathcal {F}\).

By Remark A.1,

$$ \|(f_{n})_{\text{mean}} - f_{\text{mean}}\|_{\mathcal{E}_{1}} = \|(f_{n}-f)_{\text{mean}}\|_{\mathcal{E}_{1}} \leq \|f_{n}-f\|_{\widehat{\mathcal{E}}_{1}} \to 0. $$
(A.6)

Since \((f_{n})_{\text {mean}} \in \mathcal {F}\) for all n and \(\mathcal {F}\) is complete with respect to the \(\mathcal {E}_{1}\)-norm, Eq. A.6 implies \(f_{\text {mean}} \in \mathcal {F}\). □

All that remains now is to prove Proposition 8.3(c). This is by far the hardest result in this section to prove. Note that in the proof of Proposition 8.3(b), we used the fact that (fnf)mean = (fn)meanfmean. Unfortunately, the same distributive property does not hold for root-mean-square averages, so we can not use the same argument to show that \(f_{\text {rms}} \in \mathcal {F}\). Instead, we approximate frms by a series \(\{g_{n}\} \subseteq \mathcal {F}\) such that gn = fmean except for on a finite set In, on which gn = frms, where the increasing union \(\bigcup _{n} I_{n}\) is all of MA. We show that \(\widehat {\mathcal {E}}_{1}(f_{\text {rms}} - g_{n}) \to 0\) (at least along a subsequence), but the argument is calculation-heavy and difficult to summarize, because so many terms arise from the quantity \(\widehat {\mathcal {E}}(f_{\text {rms}}-g_{n})\).

We start with the following lemma. The reader should think of u in this lemma as f − (fmeanπ), where f is a function in \(\widehat {\mathcal {F}}\), and frms is the function we are trying to show belongs to \(\mathcal {F}\). By Remark 8.2(a), MA is countable.

Lemma A.2

Suppose \((M, d, \mu , \mathcal {E}, \mathcal {F})\) satisfies Assumption 1.19, \((\mathcal {E}, \mathcal {F})\) admits a jump kernel, and M = MAMC. Suppose \(u \in \widehat {\mathcal {F}}\) and umean is identically 0. (In other words, \({\int \limits }_{W_{x}} u d\widehat {\mu } = 0\) for all xMA, and u(x) = 0 for all xMC.) Let {xj} be an enumeration of MA. (Since MA is countable, such an enumeration exists.) For all n, let

$$ I_{n} = \{x_{j} : 1\leq j \leq n\},\qquad J_{n} = \{x_{j} : j>n \}, $$

and

$$ u_{n} = u \cdot 1_{(\pi^{-1}(I_{n}))}. $$
(A.7)

Then there exists a sunsequence \(\{u_{n_{k}}\}\) such that \(\widehat {\mathcal {E}}_{1}(u_{n_{k}}-u) \to 0\).

Proof

Clearly, \(\|u-u_{n}\|_{2}^{2} = {\sum }_{j>n} \left \|u \cdot 1_{W_{x_{j}}}\right \|_{2}^{2} \to 0\) (since this is the tail of \({\sum }_{j} \left \|u \cdot 1_{W_{x_{j}}}\right \|_{2}^{2} = \|u\|_{2}^{2}\), which is finite. Therefore, unu in L2-norm. All that remains to show is that \(\widehat {\mathcal {E}}(u_{n_{k}} - u) \to 0\) for some subsequence {nk}.

Recall that \(\widehat {\mathcal {F}}\) is the \(\widehat {\mathcal {E}}_{1}\)-closure of \(\widehat {\mathcal {D}}\). Since \(u \in \widehat {\mathcal {F}}\), there exists a sequence \(\{v_{k}\} \subseteq \widehat {\mathcal {D}}\) such that \(\widehat {\mathcal {E}}_{1}(v_{k}-u) \to 0\). For all k, since \(v_{k} \in \widehat {\mathcal {D}}\), we can represent vk as

$$ v_{k} = (g_{k} \circ \pi) + \sum\limits_{j=1}^{n_{k}} H_{x_{j}, {h^{k}_{j}}} $$

where gk belongs to \(\mathcal {F} \cap C_{c}(M)\), nk is a non-negative integer, and \({h^{k}_{j}} \in \tilde {\mathcal {D}}\) for all jn. We will show that \(\widehat {\mathcal {E}}(u-u_{n_{k}}) \leq \widehat {\mathcal {E}}(u-v_{k})\).

For all \(z \in \widehat {M}\),

$$ (u-v_{k})(z) = \left\{ \begin{matrix} u(z) - g_{k}(x_{j}) - H_{x_{j}, {h^{k}_{j}}}(z) &:& \text{if} z \in W_{x_{j}} \text{for some} j \leq n_{k}\\ \\ u(z)-g_{k}(x_{j}) &:& \text{if} z \in W_{x_{j}} \text{for some} j > n_{k}\\ \\ -g_{k}(z) &:& \text{if} z\in M_{C} \end{matrix}\right. $$
(A.8)

and

$$ (u-u_{n_{k}})(z) = \left\{ \begin{matrix} u(z) &:& \text{if} z \in \pi^{-1}(J_{n_{k}})\\ \\ 0 &:& \text{otherwise}. \end{matrix}\right. $$
(A.9)

For all xMA and \(C \in \mathbb {R}\), since the mean of u on Wx is 0,

$$ {\int}_{W_{x}} (u-C)^{2} d\widehat{\mu} \geq {\int}_{W_{x}} u^{2} d\widehat{\mu}. $$
(A.10)

Similarly, if x and y are distinct elements of MA, then

$$ {\int}_{W_{x} \times W_{y}} (u(z)-u(z^{\prime})-C)^{2} d\widehat{\mu} d\widehat{\mu} \geq {\int}_{W_{x} \times W_{y}} (u(z)-u(z^{\prime}))^{2} d\widehat{\mu} d\widehat{\mu} \qquad\text{for all} C \in \mathbb{R}. $$
(A.11)

For the sake of brevity, for any \(S \subseteq \widehat {M} \times \widehat {M}\), let

$$ \alpha(S) := {\int}_{(z, z^{\prime}) \in E} \left( (u-u_{n_{k}})(z) - (u-u_{n_{k}})(z^{\prime})\right)^{2} \widehat{J}(dz, dz^{\prime}) $$

and

$$ \beta(S) := {\int}_{(z, z^{\prime}) \in E} \left( (u-v_{k})(z) - (u-v_{k})(z^{\prime})\right)^{2} \widehat{J}(dz, dz^{\prime}) $$

We would like to show that \(\alpha (\widehat {M}\times \widehat {M}) = \widehat {\mathcal {E}}(u_{n_{k}}-u)\) is less than or equal to \(\beta (\widehat {M}\times \widehat {M}) = \widehat {\mathcal {E}}(u-v_{k})\). We will do so by breaking \(\widehat {M} \times \widehat {M}\) into various sets S, and showing that α(S) ≤ β(S) for each one. In each case, we use Eqs. A.8 and A.9 to express α(S) and β(S), and use Eqs. A.10 and A.11 to conclude that β(S) is the larger one.

Note that \(\widehat {M} = M_{C} \cup \pi ^{-1}(I_{n_{k}}) \cup \pi ^{-1}(J_{n_{k}})\). By Eq. A.9, whenever z and \(z^{\prime }\) both belong to \(M_{C} \cup \pi ^{-1}(I_{n_{k}})\), we have \((u-u_{n_{k}})(z)-(u-u_{n_{k}})(z^{\prime }) = 0\). Therefore,

$$ \alpha \left( \left( M_{C} \cup \pi^{-1}(I_{n_{k}}) \right) \times \left( M_{C} \cup \pi^{-1}(I_{n_{k}}) \right) \right) = 0 \leq \beta \left( \left( M_{C} \cup \pi^{-1}(I_{n_{k}}) \right) \times \left( M_{C} \cup \pi^{-1}(I_{n_{k}}) \right) \right). $$
(A.12)

If \(x \in J_{n_{k}}\) and \(z^{\prime } \in M_{C} \cup \pi ^{-1}(I_{n})\), then

$$ \begin{array}{@{}rcl@{}} &&\quad{\int}_{W_{x}} ((u-v_{k})(z) - (u-v_{k})(z^{\prime}))^{2} \widehat{\mu}(dz)\\ &=& {\int}_{W_{x}} (u(z)-g_{k}(x)-(u-v_{k})(z^{\prime}))^{2} \widehat{\mu}(dz) \qquad\text{(by Eq.~A.8)}\\ &\geq& {\int}_{W_{x}} u^{2}(z) \widehat{\mu}(dz) \qquad\text{(by Eq.~A.10, with} C = g_{k}(x) + (u-v_{k})(z^{\prime}))\\ &=& {\int}_{W_{x}} ((u-u_{n_{k}})(z) - (u-u_{n_{k}})(z^{\prime}))^{2} \widehat{\mu}(dz) \qquad\text{(by Eq.~A.9)}. \end{array} $$

Therefore,

$$ \begin{array}{@{}rcl@{}} {}\beta(\pi^{-1}(J_{n_{k}}) \times (M_{C} \cup \pi^{-1}(I_{n}))) &=& \sum\limits_{x \in J_{n_{k}}} {\int}_{z^{\prime} \in M_{C} \cup \pi^{-1}(I_{n_{k}})} J(x, \pi(z^{\prime})) {\int}_{W_{x}} ((u-v_{k})(z)\\ &&- (u-v_{k})(z^{\prime}))^{2} \widehat{\mu}(dz) \widehat{\mu}(dz^{\prime})\\ &\geq& \sum\limits_{x \in J_{n_{k}}} {\int}_{z^{\prime} \in M_{C} \cup \pi^{-1}(I_{n_{k}})} J(x, \pi(z^{\prime})) {\int}_{W_{x}} ((u-u_{n_{k}})(z) \\ &&- (u-u_{n_{k}})(z^{\prime}))^{2} \widehat{\mu}(dz) \widehat{\mu}(dz^{\prime}) \\ &=& \alpha(\pi^{-1}(J_{n_{k}}) \times (M_{C} \cup \pi^{-1}(I_{n}))). \end{array} $$
(A.13)

If x and y are distinct elements of \(J_{n_{k}}\), then

$$ \begin{array}{@{}rcl@{}} \beta(W_{x} \times W_{y}) &=& J(x, y) {\int}_{z \in W_{x}} {\int}_{z^{\prime} \in W_{y}} \left( u(z) - g_{k}(x) - u(z^{\prime}) + g_{k}(y)\right)^{2} \widehat{\mu}(dz^{\prime}) \widehat{\mu}(dz) \qquad\text{(by Eq.~A.8)}\\ &\geq& J(x, y) {\int}_{W_{x} \times W_{y}} (u(z)-u(z^{\prime}))^{2} \widehat{\mu}(dz^{\prime}) \widehat{\mu}(dz) \qquad\text{(by Eq.~A.11 with $C=g_{k}(x)-g_{k}(y)$)}\\ &=& \alpha(W_{x} \times W_{y}) \qquad\text{(by Eq.~A.9)}. \end{array} $$
(A.14)

If \(x \in J_{n_{k}}\), then by Eqs. A.8 and A.9,

$$ \alpha(W_{x} \times W_{x}) = {\int}_{W_{x} \times W_{x}} (u(z)-u(z^{\prime}))^{2} \widehat{J}(dz, dz^{\prime}) = \beta(W_{x} \times W_{x}). $$
(A.15)

By Eqs. A.12A.15, we see that \(\alpha (\widehat {M} \times \widehat {M}) \leq \beta (\widehat {M} \times \widehat {M})\), or \(\widehat {\mathcal {E}}(u-u_{n_{k}}) \leq \widehat {\mathcal {E}}(u-v_{k})\). Since \(\widehat {\mathcal {E}}(u-v_{k}) \to 0\), this means that \(\widehat {\mathcal {E}}(u-u_{n_{k}}) \to 0\) as \(k \to \infty \). □

Note that the key idea in our proof of Lemma A.2 (using Eqs. A.10 and A.11 to compare energies) would not work if it weren’t for the assumption that umean is identically 0. Let us now prove that \(f_{\text {rms}} \in \mathcal {F}\) for all \(f \in \widehat {\mathcal {F}}\). Recall that our strategy is to approximate frms by a series \(\{g_{n}\} \subseteq \mathcal {F}\) such that gn = fmean except for on a finite set In, on which gn = frms (where the increasing union \(\bigcup _{n} I_{n}\) is all of MA), and show that \(\widehat {\mathcal {E}}_{1}(f_{\text {rms}} - g_{n}) \to 0\) along a subsequence. We decompose the quantity \(\widehat {\mathcal {E}}_{1}(f_{\text {rms}} - g_{n})\) into a sum of several terms, each of which we show goes to 0 (along a subsequence). One of these terms is bounded above by \(\widehat {\mathcal {E}}(u-u_{n_{k}})\), where u = f − (fmeanπ). We handle this term using Lemma A.2.

Proof of Proposition 8.3(c)

Let us assume without loss of generality that f ≥ 0. We can do this because \(|f| \in \widehat {\mathcal {F}}\) and |f|rms = frms, so proving the result for |f| proves it for f.

As in Lemma A.2, let {xj} be an enumeration of MA. Let u := f − (fmeanπ). Note that \(u \in \widehat {\mathcal {F}}\) and umean is identically 0, just like in the setting of Lemma A.2. Let {un} be as in Eq. A.7.

Even though we have not yet shown that \(f_{\text {rms}} \in \mathcal {F}\), we do know that by Lemma 8.4 that \(\mathcal {E}(f_{\text {rms}}) \leq \widehat {\mathcal {E}}(f) < \infty \), and that \(\|f_{\text {rms}}\|_{2}^{2} = \|f\|_{2}^{2} < \infty \), so \(f_{\text {rms}} \in \mathcal {F}_{\max \limits }\).

Let h := frmsfmean. By Proposition 8.3(b), \(f_{\text {mean}} \in \mathcal {F} \subseteq \mathcal {F}_{\max \limits }\). Since \(\mathcal {F}_{\max \limits }\) is a vector space, \(h \in \mathcal {F}_{\max \limits }\). Thus,

$$ \begin{array}{@{}rcl@{}} \infty > \mathcal{E}(h) &=& {\int}_{M\times M \setminus \text{diag}_{M}} (h(x)-h(y))^{2} J(dx, dy)\\ &=& {\int}_{M_{A} \times M_{A} \setminus \text{diag}_{M_{A}}} (h(x)-h(y))^{2} J(dx, dy) \\ &&+ 2 {\int}_{x \in M_{A}} {\int}_{y \in M_{C}} h^{2}(x) J(dx, dy) \qquad\text{(since \textit{h} is 0 on $M_{C}$)}. \end{array} $$

In particular, we have both

$$ {\int}_{M_{A} \times M_{A} \setminus \text{diag}_{M_{A}}} (h(x)-h(y))^{2} J(dx, dy) < \infty $$
(A.16)

and

$$ {\int}_{x \in M_{A}} {\int}_{y \in M_{C}} h^{2}(x) J(dx, dy) < \infty. $$
(A.17)

For all n, let

$$ g_{n} := f_{\text{mean}} + {\sum}_{j \leq n} h(x_{j}) \delta_{x_{j}} $$

so that

$$ f_{\text{rms}} - g_{n} = {\sum}_{j>n} h(x_{j}) \delta_{x_{j}}. $$
(A.18)

By Proposition 8.3(b) and Lemma 2.4(a), \(g_{n} \in \mathcal {F}\). We will show that some subsequence of {gn} converges to frms under the \(\mathcal {E}_{1}\)-norm.

First,

$$ \begin{array}{@{}rcl@{}} \|f_{\text{rms}}-g_{n}\|_{2}^{2} &=& {\sum}_{j>n} \mu(x_j) h^2(x_j) \\ &=& {\sum}_{j>n} \mu(x_j) \left[ f_{\text{rms}}(x_j) - f_{\text{mean}}(x_j) \right]^2\\ &\leq& {\sum}_{j>n}\mu(x_j) f_{\text{rms}}^2(x_j) \to 0 \end{array} $$
(A.19)

since \({\sum }_{j>n}\mu (x_{j}) f_{\text {rms}}^{2}(x_{j})\) is the tail of \({\sum }_{j} \mu (x_{j}) f_{\text {rms}}(x_{j}) = {\int \limits }_{M_{A}} f_{\text {rms}}^{2} d\mu = {\int \limits }_{\pi ^{-1}(M_{A})} f^{2} d\widehat {\mu }\), which is finite.

By Eq. A.18,

$$ \mathcal{E}(f_{\text{rms}}-g_{n}) = {\int}_{J_{n} \times J_{n} \setminus \text{diag}_{J_{n}}} (h(x)-h(y))^{2} J(dx, dy) + 2 {\int}_{x \in J_{n}} {\int}_{y \in M\setminus J_{n}} h^{2}(x) J(dx, dy). $$
(A.20)

Note that the decreasing intersection \(\bigcap _{n \in \mathbb {N}} J_{n} \times J_{n} \setminus \text {diag}_{J_{n}}\) is empty. Therefore, by Eq. A.16 and continuity from above,

$$ \lim_{n\to\infty} {\int}_{J_{n}\times J_{n} \setminus \text{diag}_{J_{n}}} (h(x)-h(y))^{2} J(dx, dy) = 0. $$
(A.21)

For all xMA, f ξ is uniformly distributed on Wx, then by Eq. A.3,

$$ h(x) = f_{\text{rms}}(x) - f_{\text{mean}}(x) = \|f(\xi)\|_{2} - \|f_{\text{mean}}(x)\|_{2} \leq \|f(\xi)-f_{\text{mean}}(x)\|_{2} = u_{\text{rms}}(x). $$

Therefore,

$$ \begin{array}{@{}rcl@{}} {}{\int}_{x \in J_{n}} {\int}_{y \in M\setminus J_{n}} h^{2}(x) J(dx,dy) &\leq& {\int}_{x \in J_{n}} {\int}_{y \in M\setminus J_{n}} u_{\text{rms}}^{2}(x) J(dx,dy)\\ &\leq& {\int}_{z \in \widehat{J_{n}}} {\int}_{z^{\prime} \in \widehat{M}\setminus \widehat{J_{n}}} u^{2}(z) \widehat{J}(dz, dz^{\prime}) \qquad\text{(by Lemma 8.4)}\\ &=& {\int}_{z \in \widehat{J_{n}}} {\int}_{z^{\prime} \in \widehat{M}\setminus \widehat{J_{n}}} \left( (u-u_{n})(z) - (u-u_{n})(z^{\prime})\right) \widehat{J}(dz, dz^{\prime})\\ &\leq& \widehat{\mathcal{E}}(u-u_{n}). \end{array} $$
(A.22)

Let {nk} be the subsequence given by Lemma A.2 such that \(\widehat {\mathcal {E}}_{1}(u-u_{n_{k}}) \to 0\). By Eqs. A.20A.21, and A.22,

$$ \widehat{\mathcal{E}}(f_{\text{rms}} - g_{n_{k}}) \to 0. $$
(A.23)

By Eqs. A.19 and A.23,

$$ \widehat{\mathcal{E}}_{1}(f_{\text{rms}} - g_{n_{k}}) = \|f_{\text{rms}} - g_{n}\|_{2}^{2} + \widehat{\mathcal{E}}(f_{\text{rms}} - g_{n_{k}}) \to 0. $$
(A.24)

Since \(\widehat {\mathcal {F}}\) is closed and \(g_{n_{k}} \in \widehat {\mathcal {F}}\) for all k, Eq. A.24 implies that \(f_{\text {rms}} \in \mathcal {F}\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malmquist, J. Stability Results for Symmetric Jump Processes on Metric Measure Spaces with Atoms. Potential Anal 59, 167–235 (2023). https://doi.org/10.1007/s11118-021-09965-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09965-6

Keywords

Mathematics Subject Classification (2010)

Navigation