Skip to main content
Log in

Green’s Function for Second Order Elliptic Equations in Non-divergence Form

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We construct the Green function for second order elliptic equations in non-divergence form when the mean oscillations of the coefficients satisfy the Dini condition and the domain has C1,1 boundary. We also obtain pointwise bounds for the Green functions and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bauman, P.: Equivalence of the Green’s functions for diffusion operators in \(\mathbb {R}^n\): a counterexample. Proc. Amer. Math. Soc. 91(1), 64–68 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Bauman, P.: Positive solutions of elliptic equations in nondivergence form and their adjoints. Ark. Mat. 22(2), 153–173 (1984)

    Article  MathSciNet  Google Scholar 

  3. Bauman, P.: A Wiener test for nondivergence structure, second-order elliptic equations. Indiana Univ. Math. J. 34(4), 825–844 (1985)

    Article  MathSciNet  Google Scholar 

  4. Dong, H., Kim, S.: On C1, C2, and weak type-(1,1) estimates for linear elliptic operators. Commun. Partial Differ. Equ. 42(3), 417–435 (2017)

    Article  Google Scholar 

  5. Dong, H., Escauriaza, L., Kim, S.: On C1, C2, and weak type-(1,1) estimates for linear elliptic operators: part II. Math. Ann. 370 (1–2), 447–489 (2018)

    Article  MathSciNet  Google Scholar 

  6. Escauriaza, L.: Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form. Commun. Partial Differ. Equ. 25(5–6), 821–845 (2000)

    Article  MathSciNet  Google Scholar 

  7. Escauriaza, L., Montaner, S.: Some remarks on the Lp regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition. Rend. Lincei Mat. Appl. 28, 49–63 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Fabes, E.B., Stroock, D.W.: The Lp-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations. Duke Math. J. 51(4), 997–1016 (1984)

    Article  MathSciNet  Google Scholar 

  9. Fabes, E., Garofalo, N., Marín-Malave, S., Salsa, S.: Fatou theorems for some nonlinear elliptic equations. Rev. Mat. Iberoamericana 4(2), 227–251 (1988)

    Article  MathSciNet  Google Scholar 

  10. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Inc., Englewood Cliffs (1964)

    MATH  Google Scholar 

  11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  12. Grüter, M., Widman, K.-O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37(3), 303–342 (1982)

    Article  MathSciNet  Google Scholar 

  13. Hofmann, S., Kim, S.: The Green function estimates for strongly elliptic systems of second order. Manuscr. Math. 124(2), 139–172 (2007)

    Article  MathSciNet  Google Scholar 

  14. Krylov, N.V.: On one-point weak uniqueness for elliptic equations. Commun. Partial Differ. Equ. 17(11–12), 1759–1784 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

S. Kim is partially supported by National Research Foundation of Korea (NRF) Grant No. NRF-2016R1D1A1B03931680 and No. NRF-20151009350.

S. Hwang is partially supported by the Yonsei University Research Fund (Post Doc. Researcher Supporting Program) of 2017 (project no.: 2017-12-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukjung Hwang.

Appendix

Appendix

The following lemma is well known to experts and essentially due to Campanato. We provide its proof for the reader’s convenience.

Lemma A.1

Let\({\Omega } \in \mathbb {R}^{n}\)bea domain satisfying the following condition: there exists a constantA0 ∈ (0, 1] such thatfor everyx ∈Ω and 0 < r < diam Ω, wehave

$$\lvert{{\Omega}(x, r)}\rvert \ge A_{0} \lvert{B(x,r)}\rvert,\quad \text{where } {\Omega}(x,r):= {\Omega} \cap B(x, r). $$

Suppose that a function\(u \in L_{\text {loc}}^{1}(\overline {\Omega })\)is of Dini mean oscillation in Ω, then there exists a uniformly continuous functionuon Ω such thatu = ua.e. in Ω.

Proof

In the proof we shall denote

figure l

By taking the average over \({\Omega }(x, \frac 12 r)\) to the triangle inequality

$$\lvert{\bar u_{x,r} - \bar u_{x,\frac12 r}}\rvert \le \lvert{u- \bar u_{x,r}}\rvert + \lvert{u-\bar u_{x, \frac12 r}}\rvert $$

and using \(\lvert {{\Omega }(x, r)}\rvert / \lvert {{\Omega }(x,\frac 12 r)}\rvert \le 2^{n} /A_{0}\), we get

$$\lvert{\bar u_{x,r} - \bar u_{x,r/2}}\rvert \le (2^{n}/A_{0}) \omega(r) + \omega\left( \tfrac12 r\right) \le (2^{n}/A_{0}) \left( \omega(r)+ \omega\left( \tfrac12 r\right) \right). $$

By telescoping, we get

$$\begin{array}{@{}rcl@{}} \lvert{\bar u_{x,r}- \bar u_{x, 2^{-k}r}}\rvert &\le& \sum\limits_{j = 0}^{k-1} \lvert{\bar u_{x,2^{-j}r}-\bar u_{x, 2^{-(j + 1)}r}}\rvert\\ & \le& (2^{n}/A_{0})\left( \omega(r)+ 2\omega\left( \tfrac12 r\right)+ {\cdots} + 2 \omega\left( \tfrac{1}{2^{k-1}} r\right) + \omega\left( \tfrac{1}{2^{k}} r\right)\right) \\ & \le& (2^{n + 1}/A_{0}) \sum\limits_{j = 0}^{\infty} \omega\left( \tfrac{1}{2^{j}} r\right) \lesssim {{\int}_{0}^{r}} \frac{\omega(t)}{t} dt, \end{array} $$
(A.2)

where in the last step we used the fact that \(\omega (t) \simeq \omega \left (\frac {1}{2^{j}}r\right )\) when \(t \in \left (\frac {1}{2^{j + 1}}r, \frac {1}{2^{j}}r\right ]\); see [4]. Note that the last inequality also implies that

$$ \omega(r) \lesssim {{\int}_{0}^{r}} \frac{\omega(t)}{t} dt. $$
(A.3)

Now, we define the function u on Ω by setting \(u^{\ast }(x)=\lim _{r\to 0} \bar u_{x,r}\). By the Lebesgue differentiation theorem, we have u = u a.e. By letting k in (A.2), we obtain

$$ \lvert{u^{*}(x)-\bar u_{x,r}}\rvert \lesssim {{\int}_{0}^{r}} \frac{\omega(t)}{t} dt\quad\text{for a.e. \(x \in {\Omega}\).} $$
(A.4)

For any x, y in Ω, let r = |xy|, \(z=\frac 12 (x+y)\), and use Eq. A.4 to get

$$\lvert{u^{\ast}(x) - u^{\ast}(y)}\rvert \!\le\! \lvert{u^{\ast}(x) - \bar u_{x,r}}\rvert+ \lvert{u^{\ast}(y) - \bar u_{y,r}}\rvert + \lvert{\bar u_{x,r}-\bar u_{y,r}}\rvert \!\lesssim\! {\int}_{0}^{\lvert{x-y}\rvert} \frac{\omega(t)}{t} dt +\lvert{\bar u_{x,r}-\bar u_{y,r}}\rvert. $$

By taking the average over \({\Omega }(z,\frac 12 r)\) to the triangle inequality

$$\lvert{\bar u_{x,r} - \bar u_{y,r}}\rvert \le \lvert{u- \bar u_{x,r}}\rvert + \lvert{u-\bar u_{y, r}}\rvert $$

and noting that \({\Omega }(z, \frac 12 r) \subset {\Omega }(x,r)\cap {\Omega }(y,r)\), we get

$$\lvert{\bar u_{x,r} - \bar u_{y,r}}\rvert \le (2^{n + 1}/A_{0}) \omega(\lvert{x-y}\rvert). $$

Combining together and using Eq. A.3, we conclude that

$$\lvert{u^{\ast}(x)-u^{\ast}(y)}\rvert \lesssim {\int}_{0}^{\lvert{x-y}\rvert} \frac{\omega(t)}{t} dt + \omega(\lvert{x-y}\rvert) \lesssim {\int}_{0}^{\lvert{x-y}\rvert} \frac{\omega(t)}{t} dt. $$

Therefore, we see that u is uniformly continuous with it the modulus of continuity dominated by the function \(\displaystyle \rho (r):={\int }_0^r \frac {\omega (t)}{t},dt\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S., Kim, S. Green’s Function for Second Order Elliptic Equations in Non-divergence Form. Potential Anal 52, 27–39 (2020). https://doi.org/10.1007/s11118-018-9729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9729-z

Keywords

Mathematics Subject Classification (2010)

Navigation