Skip to main content
Log in

Support Theorem for Stochastic Differential Equations with Sobolev Coefficients

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove a support theorem for stochastic differential equations with Sobolev coefficients in the framework of DiPerna-Lions theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Cruzeiro, A.B.: Equations diffrentielles ordinaires: non explosion et measures quasi-invariantes. J. Funct. Anal. 54(2), 193–205 (1983)

    Article  MathSciNet  Google Scholar 

  3. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  4. Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coeffcients. J. Funct. Anal. 254, 109–153 (2008)

    Article  MathSciNet  Google Scholar 

  5. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Czechoslovak North-Holland, Amsterdam, Kodansha, Tokyo (1981)

  6. Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  7. Le Bris, C., Lions, P.L.: Renormalized solutions of some transport equations with partially \(W^{1,1}\) velocities and applications. Ann. Mat. Pura Appl. (4) 183, 97–130 (2004)

    Article  MathSciNet  Google Scholar 

  8. Millet, A., Sanz-Solé, M.: A simple proof of the support theorem for diffusion processes. In: Séminaire de Probabilités, XXVIII, Lecture Notes in Math, p 1583. Springer, Berlin (1994)

  9. Ren, J., Zhang, X.: Limit theorems for stochastic differential equations with discontinuous coefficients. Siam J. Math. Anal. 43, 302–321 (2011)

    Article  MathSciNet  Google Scholar 

  10. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  11. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)

    MATH  Google Scholar 

  12. Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. Proc. of Sixth Berkeley Symp. Math. Statist. Prob. III(98), 333–359 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Triebel, H.: Interpolation theory, function spaces, differential operators. North–Holland, Amsterdam (1978)

  14. Zhang, X.: Stochastic flows of SDEs with irregular coefficients and stochastic transport equations. Bull. Sci. Math. 134, 340–478 (2010)

    Article  MathSciNet  Google Scholar 

  15. Zhang, X.: Well-posedness and large deviation for degenerate SDEs with Sobolev coefficients. Rev. Mat. Iberoam. 29(1), 25–52 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ren, J., Wu, J.: On approximate continuity and the support of reflected stochastic differential equations. Ann. Probab. 44(3), 2064–2116 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author is very grateful to Professor Xicheng Zhang for his encouragement and useful discussions. The authors would also like to thank the anonymous referees and the editor for their careful reading of manuscript, correcting errors and making very helping suggestions, which improve the quality of this paper. This work was supported by China NSF Grant No.U1504620, 11471104, and Youth Science Foundation of Henan Normal University Grant No.2014QK02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Appendix

Appendix

Proof of Eqs. 45–48

We prove only Eq. 46 for one-dimensional Brownian motion W. The others are analogous. For \(t>2^{-n}\), write

$$\begin{array}{@{}rcl@{}} \mathcal{L} &:=& \mathbb{E} {{\int}_{t_{n}}^{{t}_{n}^{+}}} {{\int}_{t_{n}}^{s}} {\dot{W}}_{r}^{m} {\dot{W}}_{s}^{n} \mathrm{d} r \mathrm{d} s = 2^{n} \mathbb{E} (W_{t_{n}} - W_{t^{-}_{n}}) {{\int}_{t_{n}}^{{t}_{n}^{+}}} ({W}_{s}^{m} - {W}_{s_{m}}^{m})\mathrm{d} s\\ && +\, 2^{n} \mathbb{E} (W_{t_{n}} - W_{{t}_{n}^{-}}) {{\int}_{t_{n}}^{{t}_{n}^{+}}} ({W}_{s_{m}}^{m} - {W}_{t_{n}}^{m}) \mathrm{d} s =: \mathcal{L}^{1} + \mathcal{L}^{2}. \end{array} $$

By Eq. 10 and Brownian motion properties, we have (see Figure)

$$\begin{array}{@{}rcl@{}} \mathcal{L}^{1} &=& 2^{n+m} \mathbb{E} \left[(W_{t_{n}} - W_{t^{-}_{n}}) {{\int}_{t_{n}}^{t^{+}_{n}}} (s-s_{m}) (W_{s_{m}} - W_{s^{-}_{m}}) \mathrm{d} s\right]\\ &=& 2^{n+m} {{\int}_{t_{n}}^{t_{n}+ 2^{-m}}} (s-s_{m}) ({t_{n}} - {s}_{m}^{-}) \mathrm{d} s = 2^{n-2m-1}, \end{array} $$

and

$$\begin{array}{@{}rcl@{}} \mathcal{L}^{2} &=& 2^{n} \mathbb{E} \left[(W_{t_{n}} - W_{t^{-}_{n}}) {{\int}_{t_{n}}^{t^{+}_{n}}} (W_{s^{-}_{m}} - W_{t_{n}-2^{-m}}) \mathrm{d} s\right]\\ &=& 2^{n} {{\int}_{t_{n}}^{t^{+}_{n}}} [{s}_{m}^{-} \wedge t_{n} - (t_{n} - 2^{-m})] \mathrm{d} s\\ &=& 2^{n} ({t}_{n}^{+} - t_{n} - 2^{-m}) 2^{-m} = 2^{-m} - 2^{n-2m}. \end{array} $$

Summing them up, we find that

$$\mathcal{L} = 2^{-m} - 2^{n-2m-1}. $$

Thus, Eq. 46 is obtained. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Xu, J. Support Theorem for Stochastic Differential Equations with Sobolev Coefficients. Potential Anal 51, 333–360 (2019). https://doi.org/10.1007/s11118-018-9714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9714-6

Keywords

Mathematics Subject Classification (2010)

Navigation