Skip to main content
Log in

A Spectral Gap Estimate and Applications

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We consider the Schrödinger operator

$$ \text{-} \frac{d^{2}}{d x^{2}} + V {\text{on an interval}}~~[a,b]~{\text{with Dirichlet boundary conditions}},$$

where V is bounded from below and prove a lower bound on the first eigenvalue λ 1 in terms of sublevel estimates: if w V (y) = |{x ∈ [a, b] : V (x) ≤ y}|, then

$$\lambda_{1} \geq \frac{1}{250} \min\limits_{y > \min V}{\left( \frac{1}{w_{V}(y)^{2}} + y\right)}.$$

The result is sharp up to a universal constant if {x ∈ [a, b] : V(x) ≤ y} is an interval for the value of y solving the minimization problem. An immediate application is as follows: let \({\Omega } \subset \mathbb {R}^{2}\) be a convex domain and let \(u:{\Omega } \rightarrow \mathbb {R}\) be the first eigenfunction of the Laplacian − Δ on Ω with Dirichlet boundary conditions on Ω. We prove

$$\| u \|_{L^{\infty}({\Omega})} \lesssim \frac{1}{\text{inrad}({\Omega})} \left( \frac{\text{inrad}({\Omega})}{\text{diam}({\Omega})} \right)^{1/6} \|u\|_{L^{2}({\Omega})},$$

which answers a question of van den Berg in the special case of two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiti, G.: A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators. J. Appl. Math. Phys. 33, 143–148 (1982)

    MathSciNet  MATH  Google Scholar 

  2. Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. (2) 106, 93–100 (1977)

    Article  MathSciNet  Google Scholar 

  3. Grieser, D., Jerison, D.: The size of the first eigenfunction of a convex planar domain. J. Amer. Math. Soc. 11(1), 41–72 (1998)

    Article  MathSciNet  Google Scholar 

  4. Jerison, D.: The diameter of the first nodal line of a convex domain. Ann. Math. (2) 141(1), 1–33 (1995)

    Article  MathSciNet  Google Scholar 

  5. Lieb, E., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, pp. 269–303. Princeton University Press (1976)

  6. Lieb, E.: Bounds on the eigenvalues of the Laplace and Schrodinger operators. Bull. Amer. Math. Soc. 82(5), 751– 753 (1976)

    Article  MathSciNet  Google Scholar 

  7. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)

    Google Scholar 

  8. Rozenblum, G.: Distribution of the discrete spectrum of singular differential operators. Dokl. Acad. Nauk SSSR 202, 1012–1015 (1972). Translation in Soviet Math. Dokl., 13 (1972), 245–249

    MathSciNet  Google Scholar 

  9. van den Berg, M.: On the L −Norm of the First Eigenfunction of the Dirichlet Laplacian. Poten. Anal. 13, 361–366 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first and second authors gratefully acknowledge the Max Planck Institute for Mathematics, Bonn for providing ideal working conditions. The third author was partially supported by an AMS Simons Travel grant and INET Grant #INO15-00038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiev, B., Mukherjee, M. & Steinerberger, S. A Spectral Gap Estimate and Applications. Potential Anal 49, 635–645 (2018). https://doi.org/10.1007/s11118-017-9670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-017-9670-6

Keywords

Mathematics Subject Classification (2010)

Navigation