Skip to main content
Log in

Integro-PDE in Hilbert Spaces: Existence of Viscosity Solutions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Existence of a viscosity solution to a non-local Hamilton-Jacobi-Bellman equation in a Hilbert space is established. We prove that the value function of an associated stochastic control problem is a viscosity solution. We provide a complete proof of the Dynamic Programming Principle for the stochastic control problem. We also illustrate the theory with Bellman equations associated to a controlled wave equation and controlled Musiela equation of mathematical finance both perturbed by Lévy processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: On the infinitesimal generators of Ornstein-Uhlenbeck processes with jumps in Hilbert space. Potential Anal. 26(1), 79–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116. Cambridge University Press, Cambridge (2009)

  3. Barski, M., Zabczyk, J.: Bond Markets with Lévy Factors, book in preparation for CUP (2017)

  4. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60 (1-2), 57–83 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertoin, J.: Lévy processes. Cambridge University Press (1996)

  6. Biswas, I.H.: On zero-sum stochastic differential games with jump-diffusion driven state: a viscosity solution framework, SIAM. J. Control Optim. 50(4), 1823–1858 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biswas, I.H., Jakobsen, E.R., Karlsen, K.H.: Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes. Appl. Math. Optim. 62(1), 47–80 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buckdahn, R., Hu, Y., Li, J.: Stochastic representation for solutions of Isaacs’ type integral-partial differential equations. Stochastic Process. Appl. 121(12), 2715–2750 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cont, R., Tankov, P.: Financial modeling with jump processes, Chapman & Hall/CRC, Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  10. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms. J. Funct. Anal. 90 (2), 237–283 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 152. Cambridge University Press, Cambridge (2014)

  12. Ethier, S.N., Kurtz, T.G.: Markov processes, characterization and convergence, Wiley Series in Probability and Statistics. Wiley, New York (1986)

    Google Scholar 

  13. Fabbri, G., Gozzi, F., Święch, A.: Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations, with Chapter 6 by M. Fuhrman and G. Tessitore, book in preparation. Chapters 1–3 are available at http://people.math.gatech.edu/~swiech/FGS-Chapters1-3.pdf (2017)

  14. Filipovic, D.: Consistency problems for Heath–Jarrow–Morton interest rate models. LNIM 1760, Springer (2001)

  15. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn, vol. 24. North-Holland Mathematical Library, North-Holland (1989)

  16. Ishikawa, Y.: Optimal control problem associated with jump processes. Appl. Math. Optim. 50(1), 21–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer (2002)

  18. Kharroubi, I., Pham, H.: Feynman-kac representation for Hamilton-Jacobi-Bellman IPDE. Ann. Probab. 43(4), 1823–1865 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kelome, D., Święch, A.: Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation. Appl. Math Optim. 47(3), 253–278 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koike, S., Święch, A.: Representation formulas for solutions of Isaacs integro-PDE. Indiana Univ. Math J. 62(5), 1473–1502 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lescot, P., Röckner, M.: Perturbations of generalized Mehler semigroups and applications to stochastic heat equations with Levy noise and singular drift. Potential Anal. 20(4), 317–344 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Universitext, Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  23. Ondrejat, M.: Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.) 426, 63 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Peszat, S.: Lévy-Ornstein-Uhlenbeck transition semigroup as second quantized operator. J. Funct. Anal. 260(12), 3457–3473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach Encyclopedia of Mathematics and Its Applications, vol. 113. Cambridge University Press, Cambridge (2007)

  26. Pham, H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Systems Estim. Control 8(1), 27 (1998)

  27. Priola, E., Tracà, S.: On the Cauchy problem for non-local Ornstein-Uhlenbeck operators. Nonlinear Anal. 131, 182–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Priola, E., Zabczyk, J.: Liouville theorems for non-local operators. J. Funct. Anal. 216(2), 455–490 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Renardy, M.: Polar decomposition of positive operators and a problem of Crandall and Lions. Appl. Anal. 57(3–4), 383–385 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rogers, L.C.G., Williams, D.: Diffusions, Markov processes, and martingales. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  31. Soner, H.M.: Optimal control with state-space constraint. II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soner, H.M.: Optimal control of jump-Markov processes and viscosity solutions. In: Stochastic Differential Systems, Stochastic Control Theory and Applications (Minneapolis, Minn., 1986), 501–511, IMA Vol. Math. Appl., 10, Springer, New York (1988)

  33. Święch, A., Zabczyk, J.: Large deviations for stochastic PDE with Lévy noise. J. Funct. Anal. 260(3), 674–723 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Święch, A., Zabczyk, J.: Uniqueness for integro-PDE in Hilbert spaces. Potential Anal. 38(1), 233–259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yong, J., Zhou, X.Y.: Stochastic Controls. Hamiltonian Systems and HJB Equations Applications of Mathematics (New York), vol. 43. Springer, New York (1999)

  36. Zabczyk, J.: Bellman’s inclusions and excessive measures. Probab. Math. Statist 21(1), 101–122 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Zabczyk, J.: Topics in stochastic process, Quaderni, SNS, Pisa (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Święch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Święch, A., Zabczyk, J. Integro-PDE in Hilbert Spaces: Existence of Viscosity Solutions. Potential Anal 45, 703–736 (2016). https://doi.org/10.1007/s11118-016-9563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9563-0

Keywords

Mathematics Subject Classification (2010)

Navigation