Skip to main content
Log in

A Reverse Hölder Inequality for Extremal Sobolev Functions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let n ≥ 2, let Ω ⊂ ℝn be a bounded domain with \(\mathcal {C}^{1}\) boundary, and let \(1 \leq p < \frac {2n}{n-2}\) (simply p ≥ 1 if n = 2). The well-known Sobolev imbedding theorem and Rellich compactness implies that

$$\mathcal{C}_{p}(\Omega) = \inf \left \{ \frac{\int_{\Omega} |\nabla f|^{2} dm}{\left ( \int_{\Omega} |f|^{p} dm \right )^{2/p}} : f \in W^{1,2}_{0}(\Omega) , f \not \equiv 0\right \} $$

is a finite, positive number, and the infimum is achieved by a nontrivial extremal function u, which one can assume is positive inside Ω. We prove that, for 1≤p ≤ 2 and for every q>p, there exists \(K= K(n, p, q, \mathcal {C}_{p}(\Omega ))>0\) such that ∥u Lp (Ω)Ku Lq (Ω). This inequality, which reverses the classical Hölder inequality, mirrors results of G. Chiti for the first Dirichlet eigenfunction of the Laplacian and of M. van den Berg for the torsion function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van den Berg, M.: Estimates for the torsion function and Sobolev constants. Potential. Anal. 36, 607–616 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. van den Berg, M., Carroll, T.: Hardy inequality and L p estimates for the torsion function. Bull. London Math. Soc., 980–986 (2009)

  3. Carroll, T., Ratzkin, J.: Interpolating between torsional rigidity and principal frequency. J. Math. Anal. Appl. 379, 818–826 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carroll, T., Ratzkin, J.: Two isoperimetric inequalities for the Sobolev constant. Z. Angew. Math. Phys. 63, 855–863 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carroll, T., Ratzkin, J.: An isoperimetric inequality for extremal Sobolev functions. RIMS Kokyuroku Bessatsu B43, 1–16 (2013)

    MATH  MathSciNet  Google Scholar 

  6. Chiti, G.: An isoperimetric inequality for the eigenfunctions of linear second order elliptic equations. Boll. Un. Mat. Ital. A 1, 145–151 (1982)

    MATH  MathSciNet  Google Scholar 

  7. Chiti, G.: A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators. Z. Angew. Math. Phys. 33, 143–148 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gidas, B., Ni, W.-N., Nireberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hardy, G. H., Littlewood, J. E., Pólya, G.: Some simple inequalities satisfied by convex functions. Messenger Math 58, 145–152 (1929)

    Google Scholar 

  10. Kohler-Jobin, M.-T.: Sur la première fonction propre d’une membrane: une extension à N dimensions de l’inégalité isopérimétrique de Payne-Rayner. Z. Angew. Math. Phys. 28, 1137–1140 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kohler-Jobin, M.-T.: Isoperimetric monotonicity and isoperimetric inequalities of Payne-Rayner type for the first eigenfunction of the Helmholtz problem. Z. Angew. Math. Phys. 32, 625–646 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Payne, L., Rayner, M.: An isoperimetric inequality for the first eigenfunction in the fixed membrane problem. Z. Angew. Math. Phys. 23, 13–15 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Payne, L., Rayner, M.: Some isoperimetric norm bounds for solutions of the Helmholtz equation. Z. Angew. Math. Phys. 24, 105–110 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pólya, G., Szegő, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press (1951)

  15. Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola. Norm. Sup. Pisa Cl. Sci 3, 697–718 (1976)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Carroll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, T., Ratzkin, J. A Reverse Hölder Inequality for Extremal Sobolev Functions. Potential Anal 42, 283–292 (2015). https://doi.org/10.1007/s11118-014-9433-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-014-9433-6

Keywords

Mathematics Subject Classification (2000)

Navigation