Skip to main content
Log in

Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators II

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

The iterates of an operator and their limit are studied in ergodic theory, approximation theory and other related fields. In this paper we continue the study of iterates of certain Markov operators acting on C[0,1]. We provide new sufficient conditions under which a Markov operator L is uniquely ergodic, i.e., it admits a unique invariant probability measure \(\nu \). The determination of \(\nu \) is reduced to solving an algebraic system of linear equations. Then \(\nu \) is used in order to express the limit of the iterates of L. Another useful tool in this study is the eigenstructure of L. The general results are applied to several families of classical Markov operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Acu, A.M., Heilmann, M., Rasa, I.: Linking Baskakov type operators. In: Constructive Theory of Functions, Sozopol 2019. Prof. Marin Drinov Publishing House of BAS, Sofia, pp. 23–38 (2020)

  2. Acu, A.M., Heilmann, M., Rasa, I.: Iterates of convolution-type operators. Positivity (2020). https://doi.org/10.1007/s11117-020-00773-7

  3. Altomare, F., Raşa, I.: Lipschitz contraction, unique ergodicity and asymptotics of Markov semigroups, Bollettino U.M.I. (9)V , 1–17 (2012)

  4. Altomare, F., Raşa, I.: On some classes of diffusion equations and related approximation problems, trends and applications in constructive approximation. In: de Bruin, M.G., Mache, D.H., Szabados, J. (eds.) International Series of Numerical Mathematics, Birkhäuser, Basel, vol. 151, pp. 13–26 (2005)

  5. Altomare, F., Cappelletti Montano, M., Leonessa, V., Raşa, I.: Markov Operators. Positive Semigroups and Approximation Processes. Walter de Gruyter, Berlin (2014)

    MATH  Google Scholar 

  6. Attalienti, A., Raşa, I.: Overiterated linear operators and asymptotic behaviour of semigroups. Mediterr. J. Math. 5, 315–324 (2008)

    Article  MathSciNet  Google Scholar 

  7. Badea, C.: Bernstein polynomials and operator theory. Results Math. 53(3–4), 229–236 (2009)

    Article  MathSciNet  Google Scholar 

  8. de Boor, C.: A practical guide to splines, Revised ed. In: Marsden, J.E., Sirovich, L. (eds.) Applied Mathematical Sciences. Springer, Berlin (2001)

    Google Scholar 

  9. Cooper, S., Waldron, S.: The eigenstructure of the Bernstein operator. J. Approx. Theory 105, 133–165 (2000)

    Article  MathSciNet  Google Scholar 

  10. Gavrea, I., Gonska, H.H., Kacsó, D.P.: On the variation-diminishing property. Results Math. 33, 96–105 (1998)

    Article  MathSciNet  Google Scholar 

  11. Gavrea, I., Ivan, M.: On the iterates of positive linear operators preserving the affine functions. J. Math. Anal. Appl. 372, 366–368 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gonska, H., Raşa, I.: On infinite products of positive linear operators reproducing linear functions. Positivity 17(1), 67–79 (2011)

    Article  MathSciNet  Google Scholar 

  13. Gonska, H., Raşa, I., Stanila, E.-D.: The eigenstructure of operators linking the Bernstein and the genuine Bernstein-Durrmeyer operators. Mediterr. J. Math. 11, 561–576 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gonska, H., Raşa, I., Rusu, M.D.: Applications of an Ostrowski-type inequality. J. Comput. Anal. Appl. 14(1), 19–31 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Gonska, H., Heilmann, M., Raşa, I.: Kantorovich operators of order k. Numer. Funct. Anal. Optimiz. 32, 717–738 (2011)

    Article  MathSciNet  Google Scholar 

  16. Gonska, H., Păltănea, R.: Simultaneous approximation by a class of Bernstein–Durrmeyer operators preserving linear functions. Czech Math. J. 60(135), 783–799 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gonska, H., Păltănea, R.: Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions. Ukr. Math. J. 62, 913–922 (2010)

    Article  MathSciNet  Google Scholar 

  18. Heilmann, M., Rasa, I.: Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators. Positivity 21, 897–910 (2017). https://doi.org/10.1007/s11117-016-0441-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Heilmann, M., Rasa, I.: \(C_0\)-semigroups associated with uniquely ergodic Kantorovich modifications of operators. Positivity 22, 829–835 (2018). https://doi.org/10.1007/s11117-017-0547-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Heilmann, M., Raşa, I., Nice Representation, A., for a Link Between Bernstein-Durrmeyer and Kantorovich Operators. In: Giri D., Mohapatra R., Begehr H., Obaidat M. (eds) Mathematics and Computing. ICMC, : Communications in Computer and Information Science, vol. 655, p. 2017. Springer, Singapore (2017)

  21. Karlin, S., Ziegler, Z.: Iteration of positive approximation operators. J. Approx. Theory 3(3), 310–339 (1970)

    Article  MathSciNet  Google Scholar 

  22. Kelisky, R.P., Rivlin, T.J.: Iterates of Bernstein polynomials. Pac. J. Math. 21(3), 511–520 (1967)

    Article  MathSciNet  Google Scholar 

  23. Krengel, U.: Ergodic Theorems, de Gruyter Studies in Mathematics, vol. 6. W. de Gruyter, Berlin, New York (1985)

    Book  Google Scholar 

  24. Mache, D., Zhou, D.X.: Characterization theorems for the approximation by a family of operators. J. Approx. Theory 84, 145–161 (1996)

    Article  MathSciNet  Google Scholar 

  25. Păltănea, R.: A class of Durrmeyer type operators preserving linear functions. Ann Tiberiu Popoviciu Sem Funct Equat Approxim Convex (Cluj-Napoca) 5, 109–117 (2007)

    MATH  Google Scholar 

  26. Popa, D., Rasa, I.: Steklov averages as positive linear operators. Filomat 30(5), 1195–1201 (2016)

    Article  MathSciNet  Google Scholar 

  27. Raşa, I.: Asymptotic behaviour of iterates of positive linear operators. Jaen J. Approx. 1(2), 195–204 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Raşa, I.: \(C_0\)- semigroups and iterates of positive linear operators: asymptotic behaviour. Rend Circ Mat Palermo 2(Suppl 82), 123–142 (2010)

    Google Scholar 

  29. Vladislav, T., Raşa, I.: Analiză Numerică. Aproximare, Problema lui Cauchy Abstractă, Proiectori Altomare, Editura Tehnică, Bucureăti (1999). (in Romanian)

Download references

Acknowledgements

This work was supported by a Hasso Plattner Excellence Research Grant (LBUS-HPI-ERG-2020-04), financed by the Knowledge Transfer Center of the Lucian Blaga University of Sibiu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Maria Acu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acu, AM., Heilmann, M. & Rasa, I. Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators II. Positivity 25, 1585–1599 (2021). https://doi.org/10.1007/s11117-021-00832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-021-00832-7

Keywords

Mathematics Subject Classification

Navigation