Skip to main content
Log in

Analysis on Laakso graphs with application to the structure of transportation cost spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

This article is a continuation of our article in Dilworth et al. (Can J Math 72:774–804, 2020). We construct orthogonal bases of the cycle and cut spaces of the Laakso graph \(\mathcal {L}_n\). They are used to analyze projections from the edge space onto the cycle space and to obtain reasonably sharp estimates of the projection constant of \({\text {Lip}}_0(\mathcal {L}_n)\), the space of Lipschitz functions on \(\mathcal {L}_n\). We deduce that the Banach–Mazur distance from \({\mathrm{TC}}\quad (\mathcal {L}_n)\), the transportation cost space of \(\mathcal {L}_n\), to \(\ell _1^N\) of the same dimension is at least \((3n-5)/8\), which is the analogue of a result from [op. cit.] for the diamond graph \(D_n\). We calculate the exact projection constants of \({\text {Lip}}_0(D_{n,k})\), where \(D_{n,k}\) is the diamond graph of branching k. We also provide simple examples of finite metric spaces, transportation cost spaces on which contain \(\ell _\infty ^3\) and \(\ell _\infty ^4\) isometrically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aliaga, R.J., Pernecká, E.: Supports and extreme points in Lipschitz-free spaces. Rev. Mat. Iberoam. 36(7), 2073–2089 (2020). https://doi.org/10.4171/rmi/1191

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrew, A.D.: On subsequences of the Haar system in \(C(\Delta )\). Israel J. Math. 31, 85–90 (1978)

    Article  MathSciNet  Google Scholar 

  3. Baudier, F.P., Motakis, P., Schlumprecht, T., Zsák, A.: Stochastic approximation of lamplighter metrics, arXiv:2003.06093v2

  4. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI (2000)

  5. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 380–388. ACM, New York (2002)

  6. Dalet, A., Kaufmann, P.L., Procházka, A.: Characterization of metric spaces whose free space is isometric to \(\ell _1\). Bull. Belg. Math. Soc. Simon Stevin 23(3), 391–400 (2016)

    Article  MathSciNet  Google Scholar 

  7. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, 173, 5th edn. Springer, Berlin (2017)

    Google Scholar 

  8. Dilworth, S.J., Kutzarova, D., Ostrovskii, M.I.: Lipschitz-free spaces of finite metric spaces. Can. J. Math. 72, 774–804 (2020)

    Article  MathSciNet  Google Scholar 

  9. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. System Sci. 69(3), 485–497 (2004); Conference version: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 448–455. ACM, New York (2003)

  10. Godard, A.: Tree metrics and their Lipschitz-free spaces. Proc. Am. Math. Soc. 138(12), 4311–4320 (2010)

    Article  MathSciNet  Google Scholar 

  11. Grünbaum, B.: Projection constants. Trans. Am. Math. Soc. 95, 451–465 (1960)

    Article  MathSciNet  Google Scholar 

  12. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and \(\ell _1\)-embeddings of graphs. Combinatorica 24, 233–269 (2004); Conference version in: 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 399–408 (1999)

  13. Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: ICCV 03: Proceedings of the 3rd International Workshop on Statistical and Computational Theories of Vision (2003)

  14. Johnson, W.B., Schechtman, G.: Diamond graphs and super-reflexivity. J. Topol. Anal. 1(2), 177–189 (2009)

    Article  MathSciNet  Google Scholar 

  15. Kantorovich, L.V.: On mass transportation (Russian), Doklady Acad. Naus SSSR (N.S.) 37, 199–201 (1942); English transl.: J. Math. Sci. (N. Y.) 133(4), 1381–1382 (2006)

  16. Kantorovich, L.V., Gavurin, M.K.: Application of mathematical methods in the analysis of cargo flows (Russian), In: Problems of improving of transport efficiency, USSR Academy of Sciences Publishers, Moscow, pp. 110–138 (1949)

  17. Khan, S.S., Mim, M., Ostrovskii, M.I.: Isometric copies of \(\ell _\infty ^n\) and \(\ell _1^n\) in transportation cost spaces on finite metric spaces. In: The Mathematical Legacy of Victor Lomonosov. Operator Theory, pp. 189–203. De Gruyter (2020). https://doi.org/10.1515/9783110656756-014

  18. Laakso, T.J.: Ahlfors \(Q\)-regular spaces with arbitrary \(Q > 1\) admitting weak Poincare inequality. Geom. Funct. Anal. 10(1), 111–123 (2000)

    Article  MathSciNet  Google Scholar 

  19. Lang, U., Plaut, C.: Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata 87, 285–307 (2001)

    Article  MathSciNet  Google Scholar 

  20. Lee, J.R., Raghavendra, P.: Coarse differentiation and multi-flows in planar graphs. Discrete Comput. Geom. 43(2), 346–362 (2010)

    Article  MathSciNet  Google Scholar 

  21. Ostrovska, S., Ostrovskii, M.I.: Non-existence of embeddings with uniformly bounded distortions of Laakso graphs into diamond graphs. Discrete Math. 340, 9–17 (2017)

    Article  MathSciNet  Google Scholar 

  22. Ostrovska, S., Ostrovskii, M.I.: Generalized transportation cost spaces. Mediterr. J. Math. 16, no. 6, Paper No. 157 (2019)

  23. Ostrovska, S., Ostrovskii, M.I.: On relations between transportation cost spaces and \(\ell _1\). J. Math. Anal. Appl. 491(2), 124338 (2020). https://doi.org/10.1016/j.jmaa.2020.124338

    Article  MathSciNet  MATH  Google Scholar 

  24. Ostrovskii, M.I.: On metric characterizations of some classes of Banach spaces. C. R. Acad. Bulgare Sci. 64(6), 775–784 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Ostrovskii, M.I.: Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces, de Gruyter Studies in Mathematics, 49. Walter de Gruyter & Co., Berlin (2013)

    Book  Google Scholar 

  26. Ostrovskii, M.I., Randrianantoanina, B.: A new approach to low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces. J. Funct. Anal. 273(2), 598–651 (2017)

    Article  MathSciNet  Google Scholar 

  27. Rudin, W.: Projections on invariant subspaces. Proc. Am. Math. Soc. 13, 429–432 (1962)

    Article  MathSciNet  Google Scholar 

  28. Weaver, N.: Lipschitz Algebras, 2nd edn. World Scientific Publishing Co. Pte. Ltd., Hackensack (2018)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for a very careful reading of the manuscript and for making numerous corrections and helpful suggestions which resulted in a much clearer presentation. The second author acknowledges the support from the Simons Foundation under Collaborative Grant No 636954. The third author gratefully acknowledges the support by the National Science Foundation Grant NSF DMS-1953773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Dilworth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilworth, S.J., Kutzarova, D. & Ostrovskii, M.I. Analysis on Laakso graphs with application to the structure of transportation cost spaces. Positivity 25, 1403–1435 (2021). https://doi.org/10.1007/s11117-021-00821-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-021-00821-w

Keywords

Mathematics Subject Classification

Navigation