Skip to main content
Log in

Existence of positive solution for nonlocal singular fourth order Kirchhoff equation with Hardy potential

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type

$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$

under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic press, London (1975)

    MATH  Google Scholar 

  2. Ansari, H., Vaezpour, S.M.: Existence and multiplicity of solutions for fourth-order elliptic Kirchhoff equations with potential term. Complex Var. Elliptic Equ. 60, 668–695 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H.: Functional Analysis Sobolev Spaces and Partial Differential Equations. Springer, Heidelberg (2010)

    Book  Google Scholar 

  4. Corrêa, F.J.S.A., Corrêa, A.S.S., Figueiredo, G.M.: Positive solution for a class of \(p\) & \(q\)-singular elliptic equation. Nonlinear Anal. 16, 163–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corrêa, F., Menezes, S.D.B.: Existence of solutions to nonlocal and singular elliptic problems via Galerkin method. Electron. J. Differ. Equ. 19, 1–10 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Evans, L.C.: Partial Differential Equation, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  7. Figueiredo, G.M., Nascimeto, R.G.: Multiplicity of solutions for equations involving a nonlocal term and biharmonic operator. Electron. J. Differ. Equ. 217, 1–15 (2016)

    MathSciNet  Google Scholar 

  8. Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic Boundary Value Problems. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  9. Giacomoni, J., Warnault, G., Prashanth, S.: Existence and global analytic bifurcation for singular biharmonic equation with Navier boundary condition. Proc. Am. Math. Soc. 145, 151–164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khoutir, S., Chen, H.: Least energy sign-changing solutions for a class of fourth order Kirchhoff-type equations in \({\mathbf{R}}^N\), J. Appl. Math. Comput. 1–15. doi:10.1007/s12190-016-1023-x

  11. Kristály, A., Varga, C.: Multiple solutions for elliptic problems with singular and sublinear potentials. Proc. Am. Math. Soc. 135, 21212126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions, J.L.: Quelques Methodes de resolution des problemes aux limites non lineaires. Dunod, Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  13. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13(3), 115162 (1959)

    MathSciNet  Google Scholar 

  14. Pelesko, J.A., Bernstein, A.A.: Modeling MEMS and NEMS. Chapman Hall and CRC Press, Boca Raton (2002)

    Book  MATH  Google Scholar 

  15. Pérez-Llanos, M., Primo, A.: Semilinear biharmonic problems with a singular term. J. Differ. Equ. 257, 32003225 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  17. Song, Y., Shi, S.: Multiplicity of solutions for fourth order elliptic equations of Kirchhoff type with critical exponent, J. Dyn. Control. Syst. 1–12 (2016). doi:10.1007/s10883-016-9331-x

  18. Visik, M.I.: Solution of a system of quasilinear equations having divergence form tender periodic boundary conditions. Dokl. Akad. Nauk. 137, 502–505 (1961)

    Google Scholar 

  19. Wang, F., Avci, M., An, Y.: Existence of solutions for fourth order elliptic equations of Kirchhoff type. J. Math. Anal. Appl. 409, 140–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Y., Shen, Y.: Nonlinear biharmonic equations with Hardy potential and critical parameter. J. Math. Anal. Appl. 355, 649660 (2009)

    Article  MathSciNet  Google Scholar 

  21. Woinowsky-Krieger, S.: The effect of axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their useful remarks and their careful reeding of the proofs presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mansour Vaezpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, H., Vaezpour, S.M. & Hesaaraki, M. Existence of positive solution for nonlocal singular fourth order Kirchhoff equation with Hardy potential. Positivity 21, 1545–1562 (2017). https://doi.org/10.1007/s11117-017-0484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-017-0484-y

Keywords

Mathematics Subject Classification

Navigation