Skip to main content
Log in

A Liouville theorem for \(p\)-harmonic functions on exterior domains

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We prove Liouville type theorems for \(p\)-harmonic functions on exterior domains of \({\mathbb {R}}^{d}\), where \(1<p<\infty \) and \(d\ge 2\). We show that every positive \(p\)-harmonic function satisfying zero Dirichlet, Neumann or Robin boundary conditions and having zero limit as \(|x|\) tends to infinity is identically zero. In the case of zero Neumann boundary conditions, we establish that any semi-bounded \(p\)-harmonic function is constant if \(1<p<d\). If \(p\ge d\), then it is either constant or it behaves asymptotically like the fundamental solution of the homogeneous \(p\)-Laplace equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Warma, M.: The Laplacian with Robin boundary conditions on arbitrary domains. Potential Anal. 19, 341–363 (2003). doi:10.1023/A:1024181608863

    Article  MathSciNet  MATH  Google Scholar 

  2. Ávila, A.I., Brock, F.: Asymptotics at infinity of solutions for \(p\) -Laplace equations in exterior domains. Nonlinear Anal. 69, 1615–1628 (2008). doi: 10.1016/j.na.2007.07.003

    Article  MathSciNet  MATH  Google Scholar 

  3. Axler, S., Bourdon, P., Ramey, W.: Harmonic function theory, 2nd edn. Graduate Texts in Mathematics, vol. 137, Springer, New York (2001). doi:10.1007/978-1-4757-8137-3

  4. Bidaut-Véron, M.-F., Pohozaev, S.: Nonexistence results and estimates for some nonlinear elliptic problems. J. Anal. Math. 84, 1–49 (2001). doi:10.1007/BF02788105

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis, H., Chipot, M., Xie, Y.: Some remarks on Liouville type theorems, Recent advances in nonlinear analysis, pp. 43–65. World Sci. Publ., Hackensack (2008). doi:10.1142/9789812709257_0003

  6. Chill, R., Hauer, D., Kennedy, J.: Nonlinear semigroups generated by \(j\) -elliptic functionals (2014, in press)

  7. Chipot, M.: Elliptic equations: an introductory course, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser, Basel (2009). doi:10.1007/978-3-7643-9982-5

  8. Dancer, E.N.: Superlinear problems on domains with holes of asymptotic shape and exterior problems. Math. Z. 229, 475–491 (1998). doi:10.1007/PL00004666

    Article  MathSciNet  MATH  Google Scholar 

  9. Dancer, E.N., Daners, D., Hauer, D.: Uniform convergence of solutions to elliptic equations on domains with shrinking holes (2014, in press)

  10. Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Am. Math. Soc. 352, 4207–4236 (2000). doi:10.1090/S0002-9947-00-02444-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Daners, D., Drábek, P.: A priori estimates for a class of quasi-linear elliptic equations. Trans. Am. Math. Soc. 361, 6475–6500 (2009). doi:10.1090/S0002-9947-09-04839-9

    Article  MATH  Google Scholar 

  12. Fraas, M., Pinchover, Y.: Positive Liouville theorems and asymptotic behavior for \(p\) -Laplacian type elliptic equations with a Fuchsian potential. Confluentes Math. 3, 291–323 (2011). doi: 10.1142/S1793744211000321

    Article  MathSciNet  MATH  Google Scholar 

  13. Fraas, M., Pinchover, Y.: Isolated singularities of positive solutions of \(p\) -Laplacian type equations in \(\mathbb{R}^d\). J. Differ. Equ. 254, 1097–1119 (2013). doi: 10.1016/j.jde.2012.10.006

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Classics in Mathematics, Springer, Berlin (2001) [Reprint of the 1998 edition]

  15. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1993)

  16. Kichenassamy, S., Véron, L.: Singular solutions of the \(p\)-Laplace equation. Math. Ann. 275, 599–615 (1986). doi: 10.1007/BF01459140

    Article  MathSciNet  MATH  Google Scholar 

  17. Krasnosel’skii, M.A.: Topological methods in the theory of nonlinear integral equations, Translated by A. H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book, The Macmillan Co., New York (1964)

  18. Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139, 555–579 (2007). doi:10.1215/S0012-7094-07-13935-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations, Springer, New York (1984) [Corrected reprint of the 1967 original]. doi:10.1007/978-1-4612-5282-5

  20. Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Serrin, J.: Singularities of solutions of nonlinear equations. In: Proc. Sympos. Appl. Math., vol. XVII, Am. Math. Soc., Providence, pp. 68–88 (1965)

  22. Serrin, J., Zou, H.: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189, 79–142 (2002). doi:10.1007/BF02392645

    Article  MathSciNet  MATH  Google Scholar 

  23. Vainberg, M.M.A.: Variational methods for the study of nonlinear operators. Holden-Day Inc, San Francisco (1964)

Download references

Acknowledgments

We thank the referees for the careful reading and pointing out some mistakes in an earlier version of the manuscript. Also we thank for the suggestion to state Lemma 3.2 explicitely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dancer, E.N., Daners, D. & Hauer, D. A Liouville theorem for \(p\)-harmonic functions on exterior domains. Positivity 19, 577–586 (2015). https://doi.org/10.1007/s11117-014-0316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-014-0316-2

Keywords

Mathematics Subject Classification

Navigation