Skip to main content
Log in

On the \(R\)-boundedness of stochastic convolution operators

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

The \(R\)-boundedness of certain families of vector-valued stochastic convolution operators with scalar-valued square integrable kernels is the key ingredient in the recent proof of stochastic maximal \(L^p\)-regularity, \(2<p<\infty \), for certain classes of sectorial operators acting on spaces \(X=L^q(\mu )\), \(2\le q<\infty \). This paper presents a systematic study of \(R\)-boundedness of such families. Our main result generalises the afore-mentioned \(R\)-boundedness result to a larger class of Banach lattices \(X\) and relates it to the \(\ell ^{1}\)-boundedness of an associated class of deterministic convolution operators. We also establish an intimate relationship between the \(\ell ^{1}\)-boundedness of these operators and the boundedness of the \(X\)-valued maximal function. This analysis leads, quite surprisingly, to an example showing that \(R\)-boundedness of stochastic convolution operators fails in certain UMD Banach lattices with type \(2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albiac, F., Kalton, N.J.: Topics in Banach space theory. In: Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)

  2. Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Evolutionary Equations, vol. I. Handbook of Differential Equations, pp. 1–85. North-Holland, Amsterdam (2004)

  3. Bourgain, J.: Extension of a result of Benedek. Calderón and Panzone. Ark. Mat. 22(1), 91–95 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brzeźniak, Z.: Stochastic partial differential equations in M-type \(2\) Banach spaces. Potential Anal. 4(1), 1–45 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications. Stoch Stoch Rep. 61(3–4), 245–295 (1997)

    Article  MATH  Google Scholar 

  6. Buhvalov, A.V.: The duality of functors that are generated by spaces of vector-valued functions. Izv. Akad. Nauk SSSR Ser. Mat. 39(6),1284–1309, 1438 (1975)

  7. Burkholder, D.L.: Martingales and singular integrals in Banach spaces. In: Handbook of the Geometry of Banach Spaces, vol. I, pp. 233–269. North-Holland, Amsterdam (2001)

  8. Denk, R., Hieber, M., Prüss, J.: \(R\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166(788) (2003)

  9. Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge Studies in Advanced Mathematics, vol. 4. Cambridge University Press, Cambridge (1995)

  10. Diestel, J., Uhl, J.J. Jr.: Vector measures. American Mathematical Society, Providence, R.I.: With a foreword by B. J. Pettis, Mathematical Surveys, vol. 15 (1977)

  11. Dodds, P.G., Sukochev, F.A.: RUC-decompositions in symmetric operator spaces. Integral Equ. Oper Theory 29(3), 269–287 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. García-Cuerva, J., Macías, R.A., Torrea, J.L.: The Hardy-Littlewood property of Banach lattices. Israel J. Math. 83(1–2), 177–201 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. García-Cuerva, J., Macías R.A., Torrea, J.L.: Maximal operators and B.M.O. for Banach lattices. In: Proceeding of the Edinburgh Math. Soc. (2), 41(3), 585–609 (1998)

  14. García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. North-Holland Mathematics Studies, vol. 116. North-Holland Publishing Co., Amsterdam, Notas de Matemática [Mathematical Notes], 104 (1985)

  15. Grafakos, L.: Classical Fourier analysis. In: Graduate Texts in Mathematics, vol. 86. Springer, Berlin (2008)

  16. Guerre-Delabrière, S.: \(L_p\)-Regularity of the Cauchy problem and the geometry of Banach spaces. Illinois J. Math. 39(4), 556–566 (1995)

    MATH  MathSciNet  Google Scholar 

  17. O. Kallenberg. Foundations of modern probability. In: Probability and its Applications, 2 edn. (New York). Springer, New York (2002)

  18. Kunstmann, P.C., Ullmann, A.: \({{\cal {R}}_{s}}\)-sectorial operators and generalized Triebel-Lizorkin spaces. J. Fourier Anal. Appl. 20(1), 135–185 (2014)

  19. Kunstmann, P.C., Weis, L.W.: Maximal \(L_p\)-regularity for parabolic equations. Fourier multiplier theorems and \(H^\infty \)-functional calculus. In: Functional Analytic Methods for Evolution Equations. Lecture Notes in Mathematics, vol. 1855, pp. 65–311. Springer, Berlin (2004)

  20. Kwapień, S., Veraar, M.C., Weis, L.W.: \(R\)-boundedness versus \(\gamma \)-boundedness (2014)

  21. Ledoux, M., Talagrand, M.: Probability in Banach spaces: isoperimetry and processes. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23. Springer, Berlin (1991)

  22. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II: function spaces. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 97. Springer, Berlin (1979)

  23. Maas, J., van Neerven, J.M.A.M.: Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces. J. Funct. Anal. 257, 2410–2475 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  25. van Neerven, J.M.A.M.: \(\gamma \)-Radonifying operators—a survey. In: Spectral Theory and Harmonic Analysis (Canberra, 2009). Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 44, pp. 1–62. Austral. Nat. Univ., Canberra (2010)

  26. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: Stochastic integration in UMD Banach spaces. Ann. Probab. 35(4), 1438–1478 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: Maximal \(L^p\)-regularity for stochastic evolution equations. SIAM J. Math. Anal. 44(3), 1372–1414 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: Stochastic maximal \(L^p\)-regularity. Ann. Probab. 40(2), 788–812 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: Stochastic integration in Banach spaces—a survey. In: Proceedings of the 2012 EPFL Semester on Stochastic Analysis and Applications (2013, To appear). arXiv:1304.7575

  30. van Neerven, J.M.A.M., Weis, L.W.: Stochastic integration of functions with values in a Banach space. Studia Math. 166(2), 131–170 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. van Neerven, J.M.A.M., Weis, L.W.: Weak limits and integrals of Gaussian covariances in Banach spaces. Probab. Math. Stat. 25(1), 55–74 (2005)

    MATH  Google Scholar 

  32. van Neerven, J.M.A.M., Weis, L.W.: Stochastic integration of operator-valued functions with respect to Banach space-valued Brownian motion. Potential Anal. 29(1), 65–88 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.) 426, 63 (2004)

  34. Pisier, G.: Martingales with values in uniformly convex spaces. Israel J. Math. 20(3–4), 326–350 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pisier, G.: Some results on Banach spaces without local unconditional structure. Compositio Math. 37(1), 3–19 (1978)

    MATH  MathSciNet  Google Scholar 

  36. Pisier, G., Xu, Q.: Non-commutative martingale inequalities. Comm. Math. Phys. 189(3), 667–698 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Potapov, D., Sukochev, F., Xu, Q.: On the vector-valued Littlewood-Paley-Rubio de Francia inequality. Rev. Mat. Iberoam. 28(3), 839–856 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rosiński, J., Suchanecki, Z.: On the space of vector-valued functions integrable with respect to the white noise. Colloq. Math. 43(1), 183–201 (1981) (1980)

  39. Rubio de Francia, J.L.: Martingale and integral transforms of Banach space valued functions. In: Probability and Banach spaces (Zaragoza, 1985). Lecture Notes in Mathematics, vol. 1221, pp. 195–222. Springer, Berlin (1986)

  40. Ullmann, A.: Maximal functions, functional calculus, and generalized Triebel-Lizorkin spaces for sectorial operators. PhD thesis, University of Karlsruhe (2010)

  41. Veraar, M.C.: Embedding results for \(\gamma \)-spaces. In: Recent Trends in Analysis. Proceedings of the Conference in Honor of Nikolai Nikolski on the Occasion of his 70th Birthday, Bordeaux, France, August 31–September 2, 2011, pp. 209–219. The Theta Foundation, Bucharest (2013)

  42. Weis, L.W.: A new approach to maximal \(L_p\)-regularity. In: Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998). Lecture Notes in Pure and Applied Mathematics, vol. 215, pp. 195–214. Dekker, New York (2001)

Download references

Acknowledgments

We thank Tuomas Hytönen for his kind permission to present his short proof of Proposition 4.5 here. We thank the anonymous referee for carefully reading and providing helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Veraar.

Additional information

J. van Neerven is supported by VICI subsidy 639.033.604 of the Netherlands Organisation for Scientific Research (NWO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Neerven, J., Veraar, M. & Weis, L. On the \(R\)-boundedness of stochastic convolution operators. Positivity 19, 355–384 (2015). https://doi.org/10.1007/s11117-014-0302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-014-0302-8

Keywords

Mathematics Subject Classification (2000)

Navigation