Skip to main content
Log in

An optimized and area-efficient QCA-based subtractor with easy access to input and output: design and cost estimation

  • Manuscript
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata (QCA) is a novel computational paradigm in nanotechnology with some benefits, such as low energy usage, rapid speed, and high density. Several logical circuits have been examined in this nanotechnology, but subtractors with easy access to inputs and outputs cells are not explored thoroughly. Due to the lack of easy access to inputs and outputs, the previous designs are less expandable and cannot be easily used in other circuits. Subtractors are often executed within a binary adder when using the traditional two’s complement notation at just a small computational cost by providing an addition/subtraction selector to the carry-in and inverting the second operand. The same methodology as for adder's circuit can be used to create a subtractor, a digital circuit in nanoelectronics that performs numerical subtraction. Consequently, it is necessary to construct this circuit so that the inlets and outlets are simple to access. Therefore, a new QCA-based subtractor design is suggested in the present investigation. The scheme is then assessed and compared to state-of-the-art designs. This design offers a solution to the problem of access to input and output for data exchange in QCA. The suggested plan uses the least amount of space, the fewest number of cells, and delay three-layer crossing approaches as compared to the existing QCA design. The suggested subtractor needs 25 cells and takes up 0.01 µm2. The QCADesigner tool provides this circuit’s simulation results and confirms the suggested circuit’s exactification. The suggested circuit is among the best regarding the area, cell counts, and quantum costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are provided in the paper.

References

  1. Ikeda, K., Suzuki, K., Konoike, R., Namiki, S., Kawashima, H.: Large-scale silicon photonics switch based on 45-nm CMOS technology. Opt. Commun. 466, 125677 (2020)

    Article  Google Scholar 

  2. Pouyan, S.M., Miri, M., Sheikhi, M.: Design of a CMOS compatible dual polarization four-level optical modulator based on thermally-actuated phase transition of vanadium dioxide. Photon. Nanostruct. Fundam. Appl. 35, 100710 (2019)

    Article  Google Scholar 

  3. Liu, W., Wang, J., Xu, X., Zhao, C., Xu, X., Weiss, P.S.: Single-step dual-layer photolithography for tunable and scalable nanopatterning. ACS Nano 15(7), 12180–12188 (2021)

    Article  Google Scholar 

  4. Steinbuch, M., Oomen, T., Vermeulen, H.: Motion control mechatronics design, and Moore’s law. IEEJ J. Ind. Appl. 11(2), 245–255 (2022)

    Google Scholar 

  5. Ahmed, S., Naz, S.F., Bhat, S.M.: Design of quantum-dot cellular automata technology based cost-efficient polar encoder for nanocommunication systems. Int. J. Commun Syst 33(18), e4630 (2020)

    Google Scholar 

  6. Das, J.C., De, D.: Design of thermometer code-to-gray code converter circuit in quantum-dot cellular automata for nano-computing network. Photon. Netw. Commun. 41(3), 259–273 (2021)

    Article  Google Scholar 

  7. Sun, J.P., Haddad, G.I., Mazumder, P., Schulman, J.N.: Resonant tunneling diodes: models and properties. Proc. IEEE 86(4), 641–660 (1998)

    Article  Google Scholar 

  8. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 19(5), 1752–1755 (2001)

    Article  Google Scholar 

  9. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  10. Fujisawa, T., Hayashi, T., Hirayama, Y., Cheong, H., Jeong, Y.: Electron counting of single-electron tunneling current. Appl. Phys. Lett. 84(13), 2343–2345 (2004)

    Article  Google Scholar 

  11. Deng, L., Liu, W., Li, D., Mohammed, B.O.: A new sign detection design for the residue number system based on quantum-dot cellular automata. Photon. Netw. Commun. 42(1), 70–80 (2021)

    Article  Google Scholar 

  12. Dhare, V., Mehta, U.: Test pattern generator for MV-based QCA combinational circuit targeting MMC fault models. IETE J. Res. 68(3), 1812–1822 (2022)

    Article  Google Scholar 

  13. Singh, G., Raj, B., Sarin, R.K.: Fault-tolerant design and analysis of QCA-based circuits. IET Circuits Dev. Syst. 12(5), 638–644 (2018)

    Article  Google Scholar 

  14. Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)

    Article  Google Scholar 

  15. Gupta, N., Choudhary, K., Katiyal, S.: Two bit arithmetic logic unit (ALU) in QCA. Int. J. Recent Trends Eng. Technol. 8(2), 35 (2013)

    Google Scholar 

  16. Seyedi, S., Pourghebleh, B.: A new design for 4-bit RCA using quantum cellular automata technology. Opt. Quantum Electron. 55(1), 11 (2023)

    Article  Google Scholar 

  17. Seyedi, S., Pourghebleh, B., Jafari Navimipour, N.: A new coplanar design of a 4-bit ripple carry adder based on quantum-dot cellular automata technology. IET Circuits Dev. Syst. 16(1), 64–70 (2022)

    Article  Google Scholar 

  18. De, D., Das, J.C.: Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)

    Article  Google Scholar 

  19. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  20. Hashemi, S., Navi, K.: A novel robust QCA full-adder. Proc. Mater. Sci. 11, 376–380 (2015)

    Article  Google Scholar 

  21. Walus, K., Vetteth, A., Jullien, G., Dimitrov, V.: RAM design using quantum-dot cellular automata, In: Nanotechnology conference, vol. 2: Citeseer, pp. 160–163 (2003)

  22. Chaharlang, J., Mosleh, M.: An overview on RAM memories in QCA technology. Majlesi J. Electr. Eng. 11(2), (2017) https://journals.iau.ir/article_696259_b3e9006a8de1d51b619a9a8bacdb9cae.pdf

  23. Safoev, N., Jeon, J.-C.: Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology. Microprocess. Microsyst. 72, 102927 (2020)

    Article  Google Scholar 

  24. Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M., Tavakoli, M.B.: Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. J. Supercomput. 77, 8305–8325 (2021)

    Article  Google Scholar 

  25. Imran, M., Collier, M., Landais, P., Katrinis, K.: Performance evaluation of hybrid optical switch architecture for data center networks. Opt. Switch. Netw. 21, 1–15 (2016)

    Article  Google Scholar 

  26. Kassa, S., Gupta, P., Kumar, M., Stephan, T., Kannan, R.: Rotated majority gate-based 2n-bit full adder design in quantum-dot cellular automata nanotechnology. Circuit World 48(1), 48–63 (2022)

    Article  Google Scholar 

  27. Marshal, R., Lakshminarayanan, G.: Fault resistant coplanar QCA full adder-subtractor using clock zone-based crossover. IETE J. Res. 69(1), 584–591 (2023)

    Article  Google Scholar 

  28. Seyedi, S., Navimipour, N.J.: A Fault-tolerance nanoscale design for binary-to-gray converter based on QCA. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1908857

    Article  MATH  Google Scholar 

  29. Moore, A.J., Wang, Y., Hu, Z., Kais, S., Weiner, A.M.: Statistical approach to quantum phase estimation, arXiv preprint http://arxiv.org/abs/2104.10285, (2021).

  30. Shu, X.-B., Li, L.-N., Ren, M.-M., Mohammed, B.O.: A new binary to gray code converter based on quantum-dot cellular automata nanotechnology. Photon Netw. Commun. 41(1), 102–108 (2021)

    Article  Google Scholar 

  31. Wu, L., Shen, Z., Ji, Y.: Using nano-scale QCA technology for designing fault-tolerant 2: 1 multiplexer. Analog Integr. Circuits Sign. Process. 109, 553–562 (2021)

    Article  Google Scholar 

  32. Patidar, M., Gupta, N.: Efficient design and implementation of a robust coplanar crossover and multilayer hybrid full adder–subtractor using QCA technology. J. Supercomput. (2021). https://doi.org/10.1007/s11227-020-03592-5

    Article  Google Scholar 

  33. Zhang, Y., Lv, H., Du, H., Huang, C., Liu, S., Xie, G.: Modular design of QCA carry flow adders and multiplier with reduced wire crossing and number of logic gates. Int. J. Circuit Theory Appl. 44(7), 1351–1366 (2016)

    Article  Google Scholar 

  34. Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: 2011 11th IEEE international conference on nanotechnology, IEEE, pp 1430–1435 (2011)

  35. Khan, M.H., Perkowski, M.A.: Quantum ternary parallel adder/subtractor with partially-look-ahead carry. J. Syst. Architect. 53(7), 453–464 (2007)

    Article  Google Scholar 

  36. Mohammadi, M., Eshghi, M., Haghparast, M., Bahrololoom, A.: Design and optimization of reversible bcd adder/subtractor circuit for quantum and nanotechnology based systems. World Appl. Sci. J. 4(6), 787–792 (2008)

    Google Scholar 

  37. Raj, M., Ahmed, S., Lakshminarayanan, G.: Subtractor circuits using different wire crossing techniques in quantum-dot cellular automata. J. Nanophotonics 14(2), 026007 (2020)

    Article  Google Scholar 

  38. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  39. Walus, K.: ATIPS Laboratory QCADesigner Homepage. ATIPS Laboratory, Univ. Calgary, Calgary (2002)

    Google Scholar 

  40. Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)

    Article  Google Scholar 

  41. Lakshmi, S.K., Athisha, G., Karthikeyan, M., Ganesh, C.: Design of subtractor using nanotechnology based QCA. In: 2010 international conference on communication control and computing technologies, 2010, IEEE, pp 384–388 (2010)

  42. Dallaki, H., Mehran, M.: Novel subtractor design based on quantum-dot cellular automata (QCA) nanotechnology. Int. J. Nanosci. Nanotechnol. 11(4), 257–262 (2015)

    Google Scholar 

  43. Reshi, J.I., Banday, M.T.: Efficient design of nano scale adder and subtractor circuits using quantum dot cellular automata (2016).

  44. Bahar, A.N., Waheed, S., Hossain, N., Asaduzzaman, M.: A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alex. Eng. J. 57(2), 729–738 (2018)

    Article  Google Scholar 

  45. Gassoumi, I., Touil, L., Mtibaa, A.: An efficient design of QCA full-adder-subtractor with low power dissipation. J. Electr. Comput. Eng. 2021, 1–9 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqiang Hu.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S. An optimized and area-efficient QCA-based subtractor with easy access to input and output: design and cost estimation. Photon Netw Commun 45, 128–135 (2023). https://doi.org/10.1007/s11107-023-00994-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-023-00994-2

Keywords

Navigation