Skip to main content
Log in

Performance and optimization of hybrid FSO/RF communication system in varying weather

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Radio frequency (RF) spectrum is already dense enough and hard to add more broadband channels to meet the current user demands. Optical free-space communications could be an excellent alternative to the RF communications system, and it provides additional benefits, e.g., large bandwidth, high data rates and reliable communication link. Therefore, free-space optical (FSO) communication system becomes more attractive for the deployment of additional broadband channels, and it fulfils the current user demands of bandwidth-hungry applications. FSO communication links are susceptible to numerous meteorological conditions such as fog, snow, dust, smoke, scintillation and smog. Achieving better connectivity under the above-mentioned severe conditions is a crucial research question. Joint optical-RF communication system is developed to overcome the problems as mentioned earlier. The proposed adaptive optical-RF transmission system is optimized so that the system performance is maximized under all channel conditions. Optimization is achieved over the respective channel mappings, and the total required power by exploiting the proposed algorithm. The mapping schemes of each link are optimally chosen such that the total mutual information is maximized while distributing optimal power to the individual channel. Simulations are performed and verified with the analytical results to validate the proposed design. A comparison of the adaptive joint system (i.e., hybrid FSO-RF) over the non-adaptive system under various weather conditions is provided. From simulation results, the performance gain of more than 1 dB is achieved under the minimum power level. It is, therefore, recommended that the adaptive hybrid FSO-RF communication system is always an optimum solution for all weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APD:

Avalanche photodiode

APSO:

Accelerated particle swarm optimization

BPSK:

Binary phase-shift keying

DEC:

Decoder

ENC:

Encoder

E/O:

Electrical to optical

EXIT:

Extrinsic information transfer

FSO:

Free-space optical

GGD:

Gamma–Gamma distribution

IR:

Infrared

IIGN:

Input-independent Gaussian noise

IM/DD:

Intensity modulation with direct detection

JPC:

Joint power constraints

LDPC:

Low-density parity check

LED:

Light emitting diodes

LOS:

Line-of-sight

MI:

Mutual information

OWC:

Optical wireless communication

OOK:

On–off keying

PIN:

Positive-intrinsic-negative

pdf:

Probability density function

4-PAM:

4-Level pulse amplitude modulation

RF:

Radio frequency

SDGN:

Signal-dependent Gaussian noise

SNR:

Signal-to-noise ratio

VLC:

Visible light communication

k :

Information bits

\(b_{\mathrm{r}}\) :

Encoded bits over the RF channel

\({\mathcal {S}}\) :

FSO channel input constellations

\({\widehat{s}}\) :

RF channel symbols

\(s_{\mathrm{H}}\) :

Hybrid symbol

\(m_{\mathrm{H}}\) :

Modulation rate

\({\widehat{f}}\) :

RF channel bit fraction

b :

Encoded bits

\(b_{\mathrm{o}}\) :

Encoded bits over the FSO channel

\(\widehat{{\mathcal {S}}}\) :

RF channel input constellations

s :

FSO channel symbols

\(\tau\) :

Codeword duration

\(P_{\mathrm{o}}\) :

Transmit power

f :

Optical channel bit fraction

References

  1. Alouini, M.S., Borgsmiller, S.A., Steffes, P.G.: Channel characterization and modeling for Ka-band very small aperture terminals. Proc. IEEE (1997). https://doi.org/10.1109/5.598420

    Article  Google Scholar 

  2. Pham, H.T.T., Dang, N.T., Vu, L.T., Bui, H.T.: A survey of performance improvement methods for free-space optical communication systems (2014). https://doi.org/10.1109/ATC.2014.7043491

  3. Zhang, Y., Park, Y., Kim, B., Kim, K.: Performance analysis of hybrid FSO/RF system (2011). https://doi.org/10.1109/ICUFN.2011.5949176

  4. Kedar, D., Arnon, S.: Urban optical wireless communication networks: the main challenges and possible solutions. IEEE Commun. Mag. 42(5), S2–S7 (2004)

    Article  Google Scholar 

  5. Cvijetic, N., Wilson, S.G., Brandt-Pearce, M.: Performance bounds for free-space optical MIMO systems with APD receivers in atmospheric turbulence. IEEE J. Sel. Areas Commun. (2008). https://doi.org/10.1109/JSAC-OCN.2008.029407

    Article  Google Scholar 

  6. Izadpanah, H., ElBatt, T., Kukshya, V., Dolezal, F., Ryu, B.K.: High-availability free space optical and RF hybrid wireless networks. IEEE Wirel. Commun. (2003). https://doi.org/10.1109/MWC.2003.1196402

    Article  Google Scholar 

  7. Khan, M.N., Jamil, M., Hussain, M.: Adaptation of hybrid FSO/RF communication system using puncturing technique. Radioengineering (2016). https://doi.org/10.13164/re.2016.0644

    Article  Google Scholar 

  8. Narmanlioglu, O., Kizilirmak, R.C., Baykas, T., Uysal, M.: Link adaptation for MIMO OFDM visible light communication systems. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2771333

    Article  Google Scholar 

  9. Khan, M.N., Jamil, M.: Adaptive hybrid free space optical/radio frequency communication system. Telecommun. Syst. (2017). https://doi.org/10.1007/s11235-016-0217-8

    Article  Google Scholar 

  10. Makki, B., Svensson, T., Eriksson, T., Alouini, M.S.: On the performance of RF-FSO links with and without hybrid ARQ. IEEE Trans. Wirel. Commun. (2016). https://doi.org/10.1109/TWC.2016.2549537

    Article  Google Scholar 

  11. Tang, Y., Brandt-Pearce, M., Wilson, S.G.: Link adaptation for throughput optimization of parallel channels with application to hybrid FSO/RF systems. IEEE Trans. Commun. (2012). https://doi.org/10.1109/TCOMM.2012.061412.100460

    Article  Google Scholar 

  12. Khodakarami, H., Lahouti, F.: Link adaptation for physical layer security over wireless fading channels. IET Commun. (2012). https://doi.org/10.1049/iet-com.2011.0319

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Lei, X., Xiao, Y., Yang, P., Zheng, C., Xiang, W.: Power allocation for pre-coding aided spatial modulation. IEEE Commun. Lett. (2018). https://doi.org/10.1109/LCOMM.2018.2797226

    Article  Google Scholar 

  14. Rakia, T., Yang, H.C., Alouini, M.S., Gebali, F.: Outage analysis of practical FSO/RF hybrid system with adaptive combining. IEEE Commun. Lett. (2015). https://doi.org/10.1109/LCOMM.2015.2443771

    Article  Google Scholar 

  15. Nock, K., Font, C., Rupar, M.: Adaptive transmission algorithms for a hard-switched FSO/RF link (2016). https://doi.org/10.1109/MILCOM.2016.7795440

  16. Webb, P.P., McIntyre, R.J., Conradi, J.: Properties of avalanche photodiodes. RCA Rev. 35(1), 234–278 (1974)

    Google Scholar 

  17. Khan, M.N.: Importance of noise models in FSO communications. EURASIP J. Wirel. Commun. Netw. (2014). https://doi.org/10.1186/1687-1499-2014-102

    Article  Google Scholar 

  18. McIntyre, R.J.: Recent developments in silicon avalanche photodiodes. Measurement (1985). https://doi.org/10.1016/0263-2241(85)90024-7

    Article  Google Scholar 

  19. Fong, S., Wong, R., Vasilakos, A.V.: Accelerated PSO swarm search feature selection for data stream mining big data. IEEE Trans. Serv. Comput. (2016). https://doi.org/10.1109/TSC.2015.2439695

    Article  Google Scholar 

  20. Al-Ahmadi, S.: The gamma-gamma signal fading model: a survey wireless corner. IEEE Antennas Propag. Mag. (2014). https://doi.org/10.1109/MAP.2014.6971962

    Article  Google Scholar 

  21. Huang, Z., Wang, Z., Huang, M., Li, W., Lin, T., He, P., Ji, Y.: Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection. IEEE Photonics J. (2017). https://doi.org/10.1109/JPHOT.2017.2655004

    Article  Google Scholar 

  22. Gallager, R.: Information Theory and Reliable Communication. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  23. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory (1962). https://doi.org/10.1109/TIT.1962.1057683

    Article  MATH  Google Scholar 

  24. Hagenauer, J.: The EXIT chart—introduction to extrinsic information transfer in iterative processing. Proc. 12th EUSIPCO’04, pp. 1541–1548 (2004)

  25. Khan, M.N., et al.: Maximizing throughput of hybrid FSO-RF communication system: an algorithm. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2840535

    Article  Google Scholar 

  26. Khan, M.N., Cowley, W.G., Nguyen, K.D.: Link adaptation of FAHOR communication system (2012). https://doi.org/10.1109/AusCTW.2012.6164917

Download references

Acknowledgements

The author would like to thank Prof. Bill Cowley and Dr. Khoa D. Nguyen from the Institute for Telecommunication Research, South Australia, for providing helpful support and useful suggestions during the course of investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nasir Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.N., Kashif, H. & Rafay, A. Performance and optimization of hybrid FSO/RF communication system in varying weather. Photon Netw Commun 41, 47–56 (2021). https://doi.org/10.1007/s11107-020-00914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00914-8

Keywords

Navigation