Skip to main content
Log in

Mirror-aided non-LOS VLC channel characterizations with a time-efficient simulation model

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The emerging cost-efficient visible light communication (VLC)-based indoor wireless network requires an economical solution for backhaul transmission. Non-line-of-sight (non-LOS) VLC links are generally applicable candidates to set up a backhaul network without rearrangement of existing lighting fixtures. Here, we describe non-LOS channels aided by the first-order specular reflection from mirrors, which can be used to overcome the multipath effect of purely diffuse non-LOS channels. Characterizations of purely diffuse and mirror-aided non-LOS channels are conducted with a time-efficient simulation model based on an iterative algorithm. Any bounce of reflections combined with specular and diffuse reflections can be simulated using the proposed iterative VLC model in polynomial time. Simulation results show that mirror-aided non-LOS channels outperform purely diffuse non-LOS links regardless of the link configuration. The effect of concentration and directionality of non-LOS VLC channels is also shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tanaka, Y., Komine, T., Haruyama, S., Nakagawa, M.: Indoor visible communication utilizing plural white LEDs as lighting. In: 12th IEEE International Symposium Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 81–85 (2001). https://doi.org/10.1109/PIMRC.2001.965300

  2. Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100 (2004). https://doi.org/10.1109/TCE.2004.1277847

    Article  Google Scholar 

  3. Grubor, J., Randel, S., Langer, K.D., Walewski, J.W.: Broadband information broadcasting using LED-based interior lighting. J. Lightw. Technol. 26(24), 3883 (2008). https://doi.org/10.1109/JLT.2008.928525

    Article  Google Scholar 

  4. Chen, C., Ijaz, M., Tsonev, D., Haas, H.: Analysis of downlink transmission in DCO-OFDM-based optical attocell networks, In: 2014 IEEE Global Communications Conference. GLOBECOM 2014, pp. 2072–2077 (2014). https://doi.org/10.1109/GLOCOM.2014.7037113

  5. Komine, T., Nakagawa, M.: Integrated system of white LED visible light communication and power line communication. IEEE Trans. Consum. Electron. 49(1), 71 (2003)

    Article  Google Scholar 

  6. Hu, P., Pathak, P.H., Das, A.K., Yang, Z., Mohapatra, P.: PLiFi: hybrid WiFi-VLC networking using power lines. In: 3rd ACM Workshop on Visible Light Communication Systems, VLCS 2016, vol. 03-07-Octo, pp. 31–36 (2016). https://doi.org/10.1145/2981548.2981549

  7. Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), 1649 (2015). https://doi.org/10.1109/COMST.2015.2417576

    Article  Google Scholar 

  8. Wang, Y., Chi, N., Wang, Y., Tao, L., Shi, J.: Network architecture of a high-speed visible light communication local area network. IEEE Photon. Technol. Lett. 27(2), 197 (2015). https://doi.org/10.1109/LPT.2014.2364955

    Article  Google Scholar 

  9. Kazemi, H., Safari, M., Haas, H.: A wireless backhaul solution using visible light communication for indoor Li-Fi attocell networks. In: IEEE ICC 2017 Optical Networks and Systems Symposium (2017)

  10. Carruthers, J.B., Kahn, J.: Modeling of nondirected wireless infrared channels. IEEE Transactions on Communications 45(10), 1260 (1997)

    Article  Google Scholar 

  11. Chen, C., Basnayaka, D., Haas, H.: Non-line-of-sight channel impulse response characterisation in visible light communications. In: 2016 IEEE International Conference on Communications, ICC 2016 (2016). https://doi.org/10.1109/ICC.2016.7511382

  12. Jungnickel, V., Pohl, V., Nönnig, S., von Helmolt, C.: A physical model of the wireless infrared communication channel. IEEE J. Sel. Areas Commun. 20(3), 631 (2002). https://doi.org/10.1109/49.995522

    Article  Google Scholar 

  13. Lopez-Hernandez, F., Perez-Jimenez, R., Santamaria, A.: Ray-tracing algorithms for fast calculation of the channel impulse response on diffuse IR wireless indoor channels. Opt. Eng. 39, 2775 (2000)

    Article  Google Scholar 

  14. Sarbazi, E., Uysal, M., Abdallah, M., Qaraqe, K.: Indoor channel modelling and characterization for visible light communications. In: International Conference on Transparent Optical Networks, pp. 1–4 (2014). https://doi.org/10.1109/ICTON.2014.6876576

  15. Miramirkhani, F., Uysal, M.: Channel modeling and characterization for visible light communications. IEEE Photon. J. 7(6), 1–16 (2015). https://doi.org/10.1109/JPHOT.2015.2504238

    Article  Google Scholar 

  16. Barry, J.R., Kahn, J., Krause, W.J., Lee, E.A., Messerschmitt, D.G.: Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Commun. 11(3), 367 (1993). https://doi.org/10.1109/49.219552

    Article  Google Scholar 

  17. Carruthers, J.B., Kannan, P.: Iterative site-based modeling for wireless infrared channels. IEEE Trans. Antennas Propag. 50(5), 759 (2002). https://doi.org/10.1109/TAP.2002.1011244

    Article  Google Scholar 

  18. Lee, K., Park, H., Barry, J.R.: Indoor channel characteristics for visible light communications. IEEE Commun. Lett. 15(2), 217 (2011). https://doi.org/10.1109/LCOMM.2011.010411.101945

    Article  Google Scholar 

  19. Lopez-Hernandez, F., Betancor, M.: DUSTIN: algorithm for calculation of impulse response on IR wireless indoor channels. Electron. Lett. 33(21), 1804 (1997)

    Article  Google Scholar 

  20. Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231 (2014). https://doi.org/10.1109/COMST.2014.2329501

    Article  Google Scholar 

  21. Aubé, M., Roby, J., Kocifaj, M.: Evaluating potential spectral impacts of various artificial lights on melatonin suppression. Photosynthesis, and star visibility. PLoS ONE 8(7), e67798 (2013). https://doi.org/10.1371/journal.pone.0067798

    Article  Google Scholar 

  22. Baldridge, A.M., Hook, S.J., Grove, C.I., Rivera, G.: The ASTER spectral library version 2.0. Remote Sens. Environ. 113(4), 711 (2009). https://doi.org/10.1016/j.rse.2008.11.007

    Article  Google Scholar 

  23. Gfeller, F.R., Bapst, U.: Wireless in-house data communication via diffuse infrared radiation. Proc. IEEE 67(11), 1474 (1979). https://doi.org/10.1109/proc.1979.11508

    Article  Google Scholar 

  24. Schlick, C.: An inexpensive BRDF model for physically-based rendering (1994). https://doi.org/10.1111/1467-8659.1330233

  25. Arumugam, S., John, J.: Effect of transmitter positions on received power and bandwidth in diffuse indoor optical wireless systems. Opt. Quantum Electron. 39(1), 1 (2007). https://doi.org/10.1007/s11082-007-9064-x

    Article  Google Scholar 

  26. De-La-Llana-Calvo, Á., Lázaro-Galilea, J., Gardel-Vicente, A., Rodríguez-Navarro, D., Bravo-Muñoz, I., Tsirigotis, G., Iglesias-Miguel, J.: Modeling the effect of optical signal multipath. Sensors 17(9), 2038 (2017). https://doi.org/10.3390/s17092038

    Article  Google Scholar 

  27. Armstrong, J.: OFDM for optical communications. J. Lightw. Technol. 27(3), 189 (2009). https://doi.org/10.1109/JLT.2008.2010061

    Article  Google Scholar 

  28. I.T.S. Group, ITU-T Rec. G.975.1 (02/2004) Forward error correction for high bit-rate DWDM submarine systems. Technical report (2005)

  29. Lu, J.: M-PSK and M-QAM BER computation using signal-space concepts. IEEE Trans. Commun. (1999). https://doi.org/10.1109/26.752121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Audenaert, P., Pickavet, M. et al. Mirror-aided non-LOS VLC channel characterizations with a time-efficient simulation model. Photon Netw Commun 38, 151–166 (2019). https://doi.org/10.1007/s11107-019-00841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00841-3

Keywords

Navigation