Skip to main content

Advertisement

Log in

Microstructure, Mechanical and Tribological Properties of High-Entropy Carbide Ceramics (VNbTaMoW)C5–SiC

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The (VNbTaMoW)C5–SiC high-entropy ceramics were prepared by spark plasma sintering at 1900°C and 40 MPa. The effects of SiC content (0–30 wt.%) on the microstructure, mechanical properties, and tribological properties were examined. The results showed that the matrix phase (VNbTaMoW)C5 exhibited a face-centered cubic structure, and the second phase (SiC) was uniformly distributed, inhibiting excessive grain growth. The relative density of (VNbTaMoW)C5– SiC composite ceramics decreased first and then dropped as SiC content increased. The fracture mode of (VNbTaMoW)C5–SiC composite ceramics changed from transgranular to mixed (transgranular fracture and intergranular) fracture with an increase in SiC content due to weak bonding between (VNbTaMoW)C5 and SiC. The grains of the (VNbTaMoW)C5 in multiphase ceramics were refined because of the grain growth-inhibiting effect of SiC. With the increase in SiC content, the hardness of (VNbTaMoW)C5–SiC multiphase ceramics increased, and the fracture toughness first increased and then decreased. The (VNbTaMoW)C5–20 wt.% SiC multiphase ceramics exhibited the best mechanical properties with Vickers' hardness and fracture toughness of 18.2 GPa and 5.7 MPa ∙ m1/2, respectively. Coupled with WC, (VNbTaMoW)C5–SiC multiphase ceramics exhibit good wear resistance with a specific wear rate of (5.7–8.1) ∙ 10–8 mm3/N ∙ m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. H. Xiang, Y. Xing, F. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, and Y. Zhou, “High-entropy ceramics: present status, challenges, and a look forward,” J. Adv. Ceram., 10, No. 3, 385–441 (2021); DOI: 10.1007/ s40145-021-0477-y.

    Article  CAS  Google Scholar 

  2. J. Gu, J. Zou, F. Zhang, W. Ji, H. Wang, W. Wang, and Z. Fu, “Recent progress in high-entropy ceramic materials,” Progress of Materials in China, 38, No. 9, 855–865+886 (2019); DOI: 10. 7502 /j. ISSN. 1674–3962. 201906017.

  3. J.H. Tyler, G. Joshua, S. Pranab, T. Cormac, M.R. Christina, F.D. Olivia, M. Cameron, K. Kevin, M. Eduardo, B. Lucas, E.H. Patrick, L. Jian, C. Stefano, W.B. Donald, and S.V. Kenneth, "Phase stability and mechanical properties of novel high entropy transition metal carbides," Acta Mater., 166, 271–280 (2018). DOI: https://doi.org/10.1016/j.actamat.2018.12.054.

    Article  CAS  Google Scholar 

  4. H. Chen, Z. Wu, M. Liu, W. Hai, and W. Sun, “Synthesis, microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics,” J. Eur. Ceram. Soc., 41, No. 15, 7498–7506 (2021); DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.07.063.

    Article  CAS  Google Scholar 

  5. S. Pranab, H. Tyler, T. Cormac, O. Corey, S. Mojtaba, M. Jon-Paul, W.B. Donald, S.V. Kenneth, and C. Stefano, “High-entropy high-hardness metal carbides discovered by entropy descriptors,” Nat. Commun., 9, 4980, (2018); DOI: https://doi.org/10.1038/s41467-018-07160-7.

    Article  CAS  Google Scholar 

  6. E. Castle, T. Csanádi, S. Grasso, J. Dusza, and M. Reece, “Processing and properties of high-entropy ultra- high temperature carbides,” Sci. Rep., 8, No. 1, 8609 (2018); DOI: https://doi.org/10.1038/s41598-018-26827-1.

  7. B. Ye, T. Wen, M.C. Nguyen, L. Hao, C. Wang, and Y. Chu, “First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics,” Acta Mater., 170, 15–23(2019); DOI: https://doi.org/10.1016/j.actamat.2019.03.021.

    Article  CAS  Google Scholar 

  8. X. Wei, J. Liu, F. Li, Y. Qin, Y. Liang, and G. Zhang, “High entropy carbide ceramics from different starting materials,” J. Eur. Ceram. Soc., 39, No. 10, 2989–2994 (2019); DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.04.006.

    Article  CAS  Google Scholar 

  9. E. Chicardi, G.C. García, and F.J. Gotor, “Low-temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route,” Ceram. Int. Part A, 45, No. 17, 21858–21863 (2019); DOI: https://doi.org/10.1016/j.ceramint.2019.07.195.

    Article  CAS  Google Scholar 

  10. K. Wang, L. Chen, C. Xu, W. Zhang, Z. Liu, Y. Wang, J. Ouyang, X. Zhang, Y. Fu, and Y. Zhou, “Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic,” J. Mater. Sci. Technol., 39, 99–105, (2020); DOI: https://doi.org/10.1016/j.jmst.2019.07.056.

    Article  Google Scholar 

  11. V.F. Gorban', A.A. Andreyev, G.N. Kartmazov, A.M. Chikryzhov, M.V. Karpets, A.V. Dolomanov, A.A. Ostroverkh, and E.V. Kantsyr, “Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy,” J. Superhard Mater., 39, No. 3 166–171 (2017); DOI: https://doi.org/10.3103/S1063457617030030.

    Article  Google Scholar 

  12. Sajid and A. Farid, “High-temperature tribology of CuMoTaWV high entropy alloy,” Wear, 426–427, 412-419 (2019); DOI: https://doi.org/10.1016/j.wear.2018.12.085.

  13. D. Ján, C. Tamás, M. Dávid, R. Sedlák, M. Vojtko, M. Ivor, H. Ünsal, P. Tatarko, M. Tatarková, and P. Šajgalík, “Nanoindentation and tribology of a (Hf–Ta–Zr–Nb–Ti)C high-entropy carbide,” J. Eur. Ceram. Soc. 41, No. 11, 5417–5426 (2021); DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.05.002.

    Article  CAS  Google Scholar 

  14. B.S. Murty, J.W. Yeh, S. Ranganathan, and P.P. Bhattacharjee, High-Entropy Alloys (Second Edition), Elsevier, (2019), pp.165–176; DOI: https://doi.org/10.1016/B978-0-12-816067-1.00009-6.

  15. J. Dusza, P. Švec, V. Girman, R. Sedlák, E.G. Castle, T. Csanádi, A. Kovalčíková, and M.J. Michael, “Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level,” J. Eur. Ceram. Soc., 38, No. 12, 4303–4307 (2018); DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.05.006.

    Article  CAS  Google Scholar 

  16. L. Liu, F. Ye, Z. Zhang, and Y. Zhou, “Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites,” Mater. Sci. Eng. A, 529, 479–484 (2011); DOI: https://doi.org/10.1016/j.msea.2011.09.079.

    Article  CAS  Google Scholar 

  17. K. Lu, J. Liu, X. Wei, W. Bao, Y. Wu, F. Li, F. Xu, and G. Zhang, “Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase,” J. Eur. Ceram. Soc., 40, No. 5, 1839–1847 (2020); DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.12.056.

    Article  CAS  Google Scholar 

  18. Alireza and M. Mehri, “Effect of B4C, MoSi2, nano SiC and micro-sized SiC on the pressureless sintering behavior, room-temperature mechanical properties and fracture behavior of Zr(Hf)B2-based composites,” Ceram. Int., 40, No. 7, 10767–10776 (2014); DOI: https://doi.org/10.1016/j.ceramint.2014.03.066.

  19. L. Liu, G. Geng, Y. Jiang, Y. Wang, W. Hai, W. Sun, Y. Chen, and L. Wu, “Microstructure and mechanical properties of tantalum carbide ceramics: effects of Si3N4 as a sintering aid,” Ceram. Int., 43, No. 6, 5136– 5144 (2017); DOI: https://doi.org/10.1016/j.ceramint.2017.01.028.

    Article  CAS  Google Scholar 

  20. L. Liu, J. Vleugels, S. Huang, J. Wei, and Y. Wang, “Strengthened interfacial bonding and its effects on fracture mode of TaC ceramics with the addition of B,” J. Eur. Ceram. Soc., 40, 1067–1077 (2020); DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.12.013.

    Article  CAS  Google Scholar 

  21. Wolfenden, C.P. Burris, and M. Singh, “Young's modulus and vibrational damping of sintered silicon carbide ceramics at high temperatures,” Mater. Sci. Eng. A, 18, No. 24, 1995–1997 (1999); DOI: https://doi.org/10.1023/a:1006685900597.

  22. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements,” J. Am. Ceram. Soc., 64, No. 9, 533–538 (2020); DOI: https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.

    Article  Google Scholar 

  23. C. Zhang, X. Hu, S. Tim, Q. Li, Z. Wu, and P. Lu, “Prediction of ceramic fracture with normal distribution pertinent to grain size,” Acta Mater., 145, 41–48 (2018); DOI: 10.1016/ j.actamat.2017.11.041.

    Article  CAS  Google Scholar 

  24. S. Jamale and K. Manoj, "Sintering and sliding wear studies of B4C-SiC composites," Int J. Refract Met H, 87, 105124 (2020); DOI: https://doi.org/10.1016/j.ijrmhm.2019.105124.

  25. P. Pereira, L.M. Vilhena, J. Sacramento, A.M.R. Senos, L.F. Malheiros, and A. Ramalho, “Abrasive wear resistance of WC-based composites, produced with Co or Ni-rich binders,” Wear, 482–483, 203924 (2021); DOI: https://doi.org/10.1016/j.wear.2021.203924.

  26. H. Chen, Z. Wu, W. Hai, L. Liu, F. Qin, X. Sun, T. Luo, and W. Sun, “Microstructure, mechanical and tribological behavior of TaC–SiC composites,” Ceram. Sci. Technol., 12, 9–18 (2021); DOI: https://doi.org/10.4416/JCST2020-00021

    Article  Google Scholar 

  27. N. Zhao, Y. Zhao, Y. Wei, Xi Wang, J. Li, Y. Xu, F. Yan, and Z. Lu, “Friction and wear behavior of TaC ceramic layer formed in-situ on the gray cast iron,” Tribol. Int., 135, 181–188 (2019); DOI: https://doi.org/10.1016/j.triboint.2019.01.003.

Download references

Acknowledgment

This study was funded by the Natural Science Foundation of Ningxia, China (2022AAC03219), the Innovation Training Program for College Students of Ningxia (S202111047003), the Graduate Student Innovation Program (YCX22135, YCX22152), and the Fundamental Research Funds for the Central Universities, North Minzu University (2022XYZCL02). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wanxiu.

Additional information

Published in Poroshkova Metallurgiya, Vol. 61, Nos. 7–8 (546), pp. 80–88, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, Z., Zihao, W., Hao, C. et al. Microstructure, Mechanical and Tribological Properties of High-Entropy Carbide Ceramics (VNbTaMoW)C5–SiC. Powder Metall Met Ceram 61, 451–458 (2022). https://doi.org/10.1007/s11106-023-00332-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00332-1

Keywords

Navigation