Skip to main content
Log in

Dielectric Properties of Sr-Doped Na0.5Bi0.5TiO3–Ba(1–x)Sr x Ti0.995Zr0.005O3 Ceramics Synthesized by Wet Solid-State Method

  • REFRACTORY AND CERAMIC MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

New dielectric composite ceramics Na0.5Bi0.5TiO3–Ba(1–x)Sr x Ti0.995Zr0.005O3 (NBT–BSTZ) ( x= 0.05, 0.1, 0.2, 0.3) have been fabricated by the wet solid-state route. The effect of Sr content on phase structure and electrical properties has been studied in detail. The X-ray diffraction analysis illustrates that the composites consist of tetragonal perovskite. With increasing Sr content, the ceramic capacitors display larger dielectric constant, better temperature stability, and lower dielectric loss in dielectric behavior. The ceramics with composition x = 0.3 possess a large dielectric constant (εr) of 2522. The temperature coefficient of capacitance of NBT–BSTZ varies from –39% to 36% in the temperature range between 0 and 200°C. The dielectric loss of capacitance is below 0.07 while the Sr content is 0.3 in the whole range of measured temperatures. The results indicate that Sr-doping is an effective method to modulate the temperature stability and dielectric loss of the NBT– BSTZ dielectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. S. H. Kim and J. H. Koh, “The current relaxation behavior of Li doped 0.7(Ba,Sr)TiO3–0.3MgO thick film interdigitated capacitors,” J. Appl. Phys., 105, 061633 (2009).

    Article  Google Scholar 

  2. J. G. Hao, B. Shen, J. W. Zhai, et al., “Switching of morphotropic phase boundary and large strain response in lead-free ternary (Na0.5Bi0.5)TiO3–(K0.5Bi0.5)TiO3–K0.5Na0.5)NbO3 system,” J. Appl. Phys., 113, 114106 (2013).

  3. H. Takeda, W. Aoto, and T. Shiosaki, “BaTiO3–Bi1/2Na1/2TiO3 solid-solution semiconducting ceramics with T c >130°C,” Appl. Phys. Lett., 87, 102–104 (2005).

    Article  Google Scholar 

  4. X. L. Wang and W. J. Cao, “Dielectric and ferroelectric properties of BaTiO3–(Na1/4Bi3/4)(Mg1/4Ti3/4)O3 ceramics,” Appl. Phys. Lett., 90, 042913 (2007).

    Article  Google Scholar 

  5. Y. Terashi, A. Purwanto, W. N. Wang, et al., “Role of urea addition in the preparation of tetragonal BaTiO3 nanoparticles using flame-assisted spray pyrolysis,” J. Eur. Ceram. Soc., 28, 2573–2580 (2008).

    Article  Google Scholar 

  6. P. S. Dobal, A. Dixit, R. S. Katiyar, et al., “Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system,” J. Appl. Phys., 89, 8085–8091(2001).

    Article  Google Scholar 

  7. N. Ortega, A. Kumar, O. Resto, et al., “Compositional engineering of BaTiO3/(Ba,Sr)TiO3 ferroelectric superlattices,” J. Appl. Phys., 114, 104102 (2013).

    Article  Google Scholar 

  8. W Li, Z. J. Xu, R. Q. Chu, et al., “Sol–gel synthesis and characterization of Ba(1–x)Sr x TO3 ceramics,” J. Alloys Compd., 499, 255–258 (2010).

    Article  Google Scholar 

  9. T. Maiti, R. Guo, and A. S. Bhalla, “Structure–property phase diagram of BaZr x Ti1–xO3 system,” J. Am. Ceram. Soc., 91, 1769–1780 (2008).

    Article  Google Scholar 

  10. Z. Yu, C. Ang, R. Y. Guo, and A. S. Bhalla, “Piezoelectric and strain properties of BaZr x Ti1–xO3 ceramics,” J. Appl. Phys., 92, 1489–1493 (2002).

    Article  Google Scholar 

  11. E. Antonelli, R. S. Silva, and A. C. Hernandes, “Ba(Zr x Ti1–x)O3 (x=0.05 and 0.08) ceramics obtained from nanometric powders: ferroelectric and dielectric properties,” Ferroelectric, 334, 75–82 (2006).

    Article  Google Scholar 

  12. L. M. Zheng, X. J. Yi, S. T. Zhang, et al., “Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3–0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions,” Appl. Phys. Lett., 103, 122905 (2013).

    Article  Google Scholar 

  13. C. S. Chen, P. Y. Chen, and C. S. Tu, “Polar nanoregions and dielectric properties in high-strain lead-free 0.93Bi1/2Na1/2TiO3–0.07BaTiO3 piezoelectric single crystals,” J. Appl. Phys., 115, 014105 (2014).

    Article  Google Scholar 

  14. S. Uddin, G. P. Zheng, Y. Iqbal, et al., “Unification of the negative electrocaloric effect in Bi1/2Na1/2TiO3–BaTiO3 solid solutions by Ba1/2Sr1/2TiO3 doping,” J. Appl. Phys., 114, 213519 (2013).

    Article  Google Scholar 

  15. R. Garg, B. N. Rao, A. Senyshyn, and R. Ranjan, “Long ranged structural modulation in the premorphotropic phase boundary cubic-like state of the lead-free piezoelectric Bi1/2Na1/2TiO3–BaTiO3,” J. Appl. Phys., 114, 234102 (2013).

    Article  Google Scholar 

  16. L. Dong, D. S. Stone, and R. S. Lakes, “Dielectric and viscoelastic properties of KNbO3 doped BaTiO3,” J. Appl. Phys., 109, 063531 (2011).

    Article  Google Scholar 

  17. V. Krayzman, I. Levin, J. C. Woicik, and F. Bridges, “Correlated rattling-ion origins of dielectric properties in reentrant dipole glasses BaTiO3–BiScO3,” J. Appl. Phys., 107, 192903 (2015).

    Google Scholar 

  18. K. C. Verma, S. Singh, S. K. Tripathi, and R. K. Kotnala, “Multiferroic Ni0.6Zn0.4Fe2O4–BaTiO3 nanostructures: magnetoelectric coupling, dielectric, and fluorescence,” J. Appl. Phys., 116, 124103 (2014).

    Article  Google Scholar 

  19. C. S. Tu, R. R. Chien, T. H. Wang, et al., “Dielectric response and origin in antiferromagnetic/ferroelectric (1–x)BiFeO3–(x)BaTiO3 ceramics,” J. Appl. Phys., 113, 17D908 (2013).

    Article  Google Scholar 

  20. A. Feteira and D. C. Sinclair, “Average and local structure of (1–x)BaTiO3–xLaYO3 (0≤x≤0.50) ceramics,” J. Am. Ceram. Soc., 93, 4174–4181 (2010)

    Article  Google Scholar 

  21. C. H. Yang, H. T. Sui, H. T. Wu, et al., “Enhanced ferroelectric and dielectric properties of Nb5+-doped Na0.5Bi0.5TiO3 thin film deposited under nitrogen annealing atmosphere,” Ceram. Int., 41, 10272–10275 (2015).

    Article  Google Scholar 

  22. N. Lei, M. K. Zhu, P. Yang, et al., “Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of Bi1/2Na1/2TiO3-based lead-free piezoceramics,” J. Appl. Phys., 109, 054102 (2011).

    Article  Google Scholar 

  23. S. N. Tripathy, K. K. Mishra, S. Sen, and D. K. Pradhan, “Dielectric and Raman spectroscopic studies of Na0.5Bi0.5TiO3–BaSnO3 ferroelectric system,” J. Am. Ceram. Soc., 97, 1846–1854 (2014).

    Article  Google Scholar 

  24. Y. P. Huang, L. H. Luo, J. Wang, et al., “The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics,” J. Appl. Phys., 118, 044101 (2015).

    Article  Google Scholar 

  25. B. K. Barick, K. K. Mishra, A. K. Arora, et al., “Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3,” J. Phys. D: Appl. Phys., 44, 355402 (2011).

    Article  Google Scholar 

  26. Y. L. Ding, X. H. Zhang, C. H. Yang, et al., “Preparation and ferroelectric properties of lead-free A0.5B0.5O3 (A=Na OR K) thin films,” Surf. Rev. Lett., 18, 121–125 (2011).

    Article  Google Scholar 

  27. E. Delgado, C. Ostos, M. L. Martínez-Sarrión, et al., “Characterization and electrical properties of new perovskite films of Ba(Ti,Zr)O3 type doped with lanthanum (BLZT),” Phys. Status Solidi C, 11, 4099–4106 (2007).

    Article  Google Scholar 

  28. V. Buscaglia, M. T. Buscaglia, M. Viviani, et al., “Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics,” J. Eur. Ceram. Soc., 26, 2889–2898(2006).

    Article  Google Scholar 

  29. A. Rajabtabar-Darvishi, R. Bayati, O. Sheikhnejad-Bishe, et al., “Giant dielectric response and low dielectric loss in Al2O3 grafted CaCu3Ti4O12 ceramics,” J. Appl. Phys., 117, 094103 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Grant Nos. 51302061 and 51308179), Natural Science Foundation of Hebei province (Grant Nos. E2014201076 and E2016201179), and Postgraduate’s Innovation Fund Project of Hebei University (Grant No. X2016084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 57, Nos. 1–2 (519), pp. 99–106, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Song, A., Liang, M. et al. Dielectric Properties of Sr-Doped Na0.5Bi0.5TiO3–Ba(1–x)Sr x Ti0.995Zr0.005O3 Ceramics Synthesized by Wet Solid-State Method. Powder Metall Met Ceram 57, 75–81 (2018). https://doi.org/10.1007/s11106-018-9957-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-9957-1

Keywords

Navigation