Skip to main content

Advertisement

Log in

The Formation of ZrO2–Ti Composites by Spark Plasma Sintering

  • THEORY AND TECHNOLOGY OF SINTERING, THERMAL AND THERMOCHEMICAL TREATMENT
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The preliminary analysis of the ZrO2–Ti composite is conducted. The samples are prepared from the nanosized ZrO2 powder stabilized with 3 mol.% Y2O3 and 10 vol.% Ti powder with particles ~15 μm in size. The samples are formed by spark plasma sintering. The spark plasma sintering parameters are: temperature 1350°C, pressure 20 MPa, and duration 10 min. All process is carried out in argon. The density of the sintered ZrO2–Ti composites is determined by the Archimedes method. The microstructural characterization is carried out using X-ray diffraction and a scanning electron microscope. Additionally, the hardness and fracture toughness are measured. The obtained composite samples have a density of ~98–99% of the theoretical value. The homogenous distribution of titanium in zirconia matrix is SEM-confirmed. Moreover, the existence of a new phase in the Ti–Zr–O system is revealed by the X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. R. Wang R. Xie, T. Sekiya, et al., “Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method,” Mater. Res. Bull., 39, No. 11, 1709–1715 (2004).

    Article  Google Scholar 

  2. B. T. Lee, K. H. Kim, and A. H. M. Esfakur Rahman, “Microstructures and mechanical properties of spark plasma sintered Al2O3–Co composites using electroless deposited Al2O3–Co powders,” Mater. Trans., 49, No. 6, 1451–1455 (2008).

    Article  Google Scholar 

  3. O. Raddatz, G. A. Schneider, W. Mackens, et al., “Bridging stresses and R-curves in ceramic/metal composites,” J. Eur. Ceram. Soc., 20, No. 13, 2261–2273 (2000).

    Article  Google Scholar 

  4. K. Niihara, “A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics,” J. Mater. Sci. Lett., 2, No. 5, 221–223, (1983).

    Article  Google Scholar 

  5. A. V. Khmelev, “Production of a mullite–zirconia ceramic by the plasma-spark method,” Refract. Ind. Ceram., 55, No. 2, 137–142 (2014).

    Article  Google Scholar 

  6. W. Li and L. Gao, “Rapid sintering of nanocrystalline ZrO2 (3Y) by spark plasma sintering,” J. Eur. Ceram. Soc., 20, Nos. 14–15, 2441–2445 (2000).

    Article  Google Scholar 

  7. X. Li-Qiang et al., “Investigation of dental ZrO2 ceramic nano-composite calcinated by spark plasma sintering,” J. Austr. Ceram. Soc., 50, No. 2, 110–117 (2014).

    Google Scholar 

  8. C. F. Gutierrez-Gonzalez, E. E. Fernandes-Garcia, and A. Fernandez, “Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites,” J. Mater. Sci., 49, No. 10, 3823–3830 (2014).

    Article  Google Scholar 

  9. W. Xue et al., “Spark plasma sintering and characteristic of 2Y–TZP ceramics,” Ceram. Int., 41, 4829—835 (2015).

    Article  Google Scholar 

  10. V. N. Chuvildeev et al., “Structure and properties of advanced materials obtained by spark plasma sintering,” Acta Astronaut., 109, 172–176 (2015).

    Article  Google Scholar 

  11. P. Angerer et al., “Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders,” Mater. Sci. Eng.: A, 381, Nos. 1–2, 16–19 (2004).

    Article  Google Scholar 

  12. Z. A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method,” J. Mater. Sci., 41, No. 3, 763–777 (2006).

    Article  Google Scholar 

  13. W. Chen, U. Anselmi-Tamburini, and J. E. Garay, “Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of DC pulsing on reactivity,” Mater. Sci. Eng.: A, 394, Nos. 1–2, 132–138 (2005).

    Article  Google Scholar 

  14. E. Fernandes-Garcia et al., “Processing and Spark Plasma Sintering of zirconia/titanium cermets,” Ceram. Int., 39, No. 6, 6931–6936 (2013).

    Article  Google Scholar 

  15. Y. Fukui and T. Fujii, “Multi-physics simulation of oxygen diffusion in PSZ–Ti composites during spark plasma sintering process,” Comp. Mater. Sci., 95, 29–34 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The study was done within the project financed by the National Center of Science (NCN), project No. DEC-2013/11/B/ST8/00309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lada.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 55, Nos. 11–12 (512), pp. 16–22, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lada, P., Miazga, A., Wozniak, J. et al. The Formation of ZrO2–Ti Composites by Spark Plasma Sintering. Powder Metall Met Ceram 55, 644–649 (2017). https://doi.org/10.1007/s11106-017-9851-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9851-2

Keywords

Navigation