Skip to main content
Log in

Effect of Carbon Content on Microstructure and Mechanical Properties of Powder Metallurgy Steels

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

In this study, steels, containing different proportions of C, were produced through powder metallurgy. The microstructure and mechanical properties of the produced powder-metallurgy (PM) steels were examined. The sintered density of PM steels was determined, and their microstructures were identified with optical microscopy, SEM, and EDS analyses. The results indicated that there was a significant increase in strength, but a decrease in elongation with an increase in C content. Considering the advantages of PM method, the results achieved in this study came almost close to rolled steel products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. P. Sharma, S. Chaturvedi, and P. Arora, “Studies on effect of percentage of carbon on the tensile and compressive strength of structural steel,” Int. J. Eng. Sci. Technol., 4, No. 5, 2328–2333 (2012).

    Google Scholar 

  2. M. S. Htun, S. T. Kyaw, and K. T. Lwin, “Effect of heat treatment on microstructures and mechanical properties of spring steel,” J. Met. Mater. Miner., 18, No. 2, 191–192 (2008).

    Google Scholar 

  3. S. A. Tukur, M. M. Usman, I. Muhammad, et al., “Effect of tempering temperature on mechanical properties of medium carbon steel,” Int. J. Eng. Trends Technol., 9, No. 15, 798–800 (2014).

    Article  Google Scholar 

  4. A. Calik, A. Duzgun, O. Sahin, et al., “Effect of carbon content on the mechanical properties of medium carbon steels,” Verlag der Zeitschrift für Naturforschung, 65, 468–472 (2010).

    Google Scholar 

  5. A. Güral, S. Tekeli, D. Özyürek, et al., “Effect of repeated quenching heat treatment on microstructure and dry sliding wear behavior of low carbon PM steel,” Mater. Sci. Forum, 534, 673–676 (2007). DOI:10.4028/www.scientific.net/MSF.534-536.673.

    Article  Google Scholar 

  6. S. Tekeli, A. Güral, and D. Özyürek, “Microstructure and dry sliding wear properties of 3Si–2Ni and 3Si–2Mn powder metallurgy steels with different graphite content,” J. Eng. Tribol., 225, No. 8, 814–820 (2011). DOI:10.1177/1350650111405255.

    Google Scholar 

  7. S. R. Nimbhorkar and B. D. Deshmukh, “Effect of case hardening treatment on the structure and properties of automobile gears,” Int. J. Mod. Eng. Res., 3, No. 2, 637–641 (2013).

    Google Scholar 

  8. D. O. Oluyemia, O. I. Oluwoleb, and B. O. Adewuy, “Studies of the properties of heat treated rolled medium carbon steel,” Mater. Res., 14, No. 2, 135–141 (2011). DOI: 10.1590/S1516-14392011005000040.

    Article  Google Scholar 

  9. P. W. Lee, in: E. Klar (ed.), Powder Metallurgy Applications, Advantages and Limitations, ASM, New York (1983).

  10. T. K. Kandavel, R. Chandramouli, and D. Shanmugasundaram, “Experimental study of the plastic deformation and densification behavior of some sintered low alloy P/M steels,” Mater. Des., 30, No. 5, 1768–1776 (2009). DOI: 10.1016/j.matdes.2008.07.027.

    Article  Google Scholar 

  11. W. D. W. Angel, L. T. Jurado, E. C. Martinez, et al., “Effect of carbon on the density, microstructure and hardness of alloys formed by mechanical alloying,” Mater. Des., 60, 605–611 (2014). DOI:10.1016/j.matdes.2014.04.039.

    Article  Google Scholar 

  12. R. Narayanasamy, V. Anandakrishnan, and K. S. Pandey, “Effect of carbon content on workability of powder metallurgy steels,” Mater. Sci. Eng. A, 494, 337–342 (2008). DOI:10.1016/j.msea.2008.04.022.

    Article  Google Scholar 

  13. M. Abdel-Rahman and M. N. El-Sheikh, “Workability in forging of powder metallurgy compacts,” J. Mater. Process. Technol., 54, 97–102 (1995). DOI:10.1016/0924-0136(95)01926-X.

    Article  Google Scholar 

  14. L. E. G. Cambronero, C. Fernandez, J. M. Torralba, et al., “Influence of powders on final properties and microstructure of sintered molybdenum steels,” Powder Metall., 37, 53–56 (1994). DOI: 10.1179/pom.1994.37.1.53.

    Article  Google Scholar 

  15. M. Fodor and J. V. Wood, “Effect of carbon on microstructure of mixed powder system cooled at moderate rates after sintering,” Powder Metall., 38, 141–146 (1995). DOI: 10.1179/pom.1995.38.2.141

    Article  Google Scholar 

  16. M. Youseffi, C. S. Wright, and F. M. Jeyacheya, “Effect of carbon content, sintering temperature, density, and cooling rate upon properties of prealloyed Fe–1.5Mo powder,” Powder Metall., 43, 270–274 (2000). DOI: 10.1179/003258900666041.

    Article  Google Scholar 

  17. M. A. Erden, S. Gündüz, M. Türkmen, et al., “Microstructural characterization and mechanical properties of microalloyed powder metallurgy steels,” Mater. Sci. Eng. A, 616, 201–206 (2014). DOI:10.1016/j.msea.2014.08.026.

    Article  Google Scholar 

  18. C. Schade, T. Murphy, A. Lawley, et al., “Microstructure and mechanical properties of microalloyed PM steels,” Int. J. Powder Metall., 48, 51–59 (2012).

    Google Scholar 

  19. C. Schade, T. Murphy, A. Lawley, et al., “Microstructure and mechanical properties of PM steels alloyed with silicon and 3-vanadium,” Int. J. Powder Metall., 48, 41–48 (2012).

    Google Scholar 

  20. A. Güral and S. Tekeli, “Microstructural characterization of intercritically annealed low alloy PM steels,” Mater. Des., 28, 1224–1230 (2007). DOI:10.1016/j.matdes.2006.01.007.

    Article  Google Scholar 

  21. W. Jing, W. Yisan, and D. Yichao, “Production of (Ti, V) C reinforced Fe matrix composites,” Mater. Sci. Eng. A, 454, 75–79 (2007). DOI: 10.1016/j.msea.2006.11.024.

    Article  Google Scholar 

  22. S. Saritaş, M. Türker, and N. Durlu, Powder Metallurgy and Particulate Materials Processing, Turkish PM Publications (2007), pp. 404–410.

  23. S. Gündüz and A. Çapar, “Influence of forging and cooling rate on microstructure and properties of medium carbon microalloy forging steel,” J. Mater. Sci. Lett., 14, No. 2, 561–564 (2006). DOI: 10.1007/s10853-005-4239-y.

    Article  Google Scholar 

  24. G. Cipolloni, C. Menapace, I. Cristofolini, et al., “A quantitative characterization of porosity in a Cr–Mo sintered steel using image analysis,” Mater. Charact., 94, 58–68 (2014). DOI :10.1016/j.matchar.2014.05.005.

    Article  Google Scholar 

  25. A. B. Blank and L. P. Eksperiandova, “Specimen preparation in X-ray fluorescence analysis of materials and natural objects,” X-Ray Spectrom., 27, No. 3, 147–160 (1998). DOI: 10.1002/(SICI)1097-4539(199805/06)27:33.0.CO;2-P.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Turkmen.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 55, Nos. 3–4 (508), pp. 53–61, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkmen, M. Effect of Carbon Content on Microstructure and Mechanical Properties of Powder Metallurgy Steels. Powder Metall Met Ceram 55, 164–171 (2016). https://doi.org/10.1007/s11106-016-9791-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-016-9791-2

Keywords

Navigation