Skip to main content
Log in

Thermodynamic Properties of Binary Al–Pr Alloys

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The mixing enthalpies of Al–Pr binary liquid alloys are measured in the ranges 0 < x Pr < 0.15 at 1560 K and 0.46 < x Pr < 1 at 1410–1670 K by isoperibol calorimetry. The Al–Pr binary melts are characterized by significant negative mixing enthalpies: \( \varDelta {H}_{Al- \Pr}^{{}^{min}} \) = –43.1 kJ/mol at x Pr = 0.33 (at 1500 K, extrapolation onto the range of supercooled melts). The activities of components, entropies, Gibbs energies, and liquidus curve of the Al–Pr phase diagram are evaluated using the model of ideal associated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Jin, Y.-B. Kang, P. Chartrand, and C. D. Fuerst, “Thermodynamic evaluation and optimization of Al–La, Al–Ce, Al–Pr, Al–Nd, and Al–Sm systems using the Modified Quasichemical Model for liquids,” CALPHAD, 35, No. 1, 30–41 (2011).

    Article  Google Scholar 

  2. M. I. Ivanov, V. V. Berezutskii, M. O. Shevchenko, et al., “Thermodynamic properties of Al–Y(La, Eu, Yb) melts,” Dop. Nats. Akad. Nauk Ukrainy, No. 8, 85–90 (2011).

    Google Scholar 

  3. V. G. Kudin, M. A. Shevchenko, I. V. Mateiko, and V. S. Sudavtsova, “Thermodynamic properties of Al–La melts,” Zh. Fiz. Khim., 87, No. 3, 364–370 (2013).

    Google Scholar 

  4. V. I. Kober, I. F. Nichkov, S. P. Raspopin, and A. A. Bogdanov, “Thermodynamic properties of Pr–Al compounds,” Izv. Vuzov. Tsvet. Metall., No. 3, 58–60 (1983).

    Google Scholar 

  5. G. Canneri and A. Rossi, “Alloys of praseodymium and aluminum,” Alluminio, 2, 87–89 (1933).

    Google Scholar 

  6. K. H. J. Buschow and J. H. N. Van Vucht, “Systematic arrangement of the binary rare earth–aluminum systems,” Philips Res. Rep., 22, 233–245 (1967).

    Google Scholar 

  7. K. H. J. Buschow and J. H. N. van Vucht, “The binary systems cerium–aluminum and praseodymium–aluminum,” Z. Metallkd., 57, 162–166 (1966).

    Google Scholar 

  8. A. Saccone, A. M. Cardinale, S. Delfino, and R. Ferro, “Phase equilibria in the rare earth metals (R)-rich regions of the R–Al systems (R = La–Ce–Pr–Nd),” Z. Metallkd., 87, 82–87 (1996).

    Google Scholar 

  9. F. Yin, X. Su, Z. Li, and P. Zhang, “A thermodynamic assessment of the Pr–Al system,” Z. Metallkd., 92, 447–450 (2001).

    Google Scholar 

  10. L. Jin, “Thermodynamic modeling of aluminum–magnesium–rare earth systems,” in: Thesis for the Degree of Philosophy Doctor (Metallurgical Engineering), University of Montreal (2012).

  11. H. Okamoto, “Al–Pr (aluminum–praseodymium),” J. Phase Equilib., 23, No. 4, 381 (2002).

  12. M. E. Drits, E. S. Kadaner, and Nguen Din Shoa, “Solid-state solubility of rare earth metals in aluminum,” Izv. Akad. Nauk SSSR. Metally, No. 1, 219–223 (1969).

  13. L. Rolla, A. Jandelli, G. Canneri, and R. Vogel, “Contribution to the knowledge of the metals and alloys of the rare earths,” Z. Metallkd., 35, 29–42 (1943).

    Google Scholar 

  14. G. N. Zviadadze, L. A. Chkhikvadze, and M. V. Kereselidze, “Thermodynamic properties of binary melts of some rare earth metals with aluminum,” Soobshch. Akad. Nauk. Gruz. SSR, No. 81, 149–152 (1976).

    Google Scholar 

  15. C. Colinet, A. Pasturel, and K. H. J. Buschow, “Molar enthalpies of formation of LnAl2 compounds,” J. Chem. Thermodyn., 17, 1133–1139 (1985).

    Article  Google Scholar 

  16. R. Ferro, G. Borzone, N. Parodi, and G. Cacciamani, “On the thermochemistry of the rare earth compounds with the p-block elements,” J. Phase Equilib., 15, 317–329 (1994).

    Article  Google Scholar 

  17. M. C. Gao, A. D. Rollett, and M. Widom, “Lattice stability of aluminum–rare earth binary systems: A firstprinciples approach,” Phys. Rev. B, 75, 174120/1–174120/16 (2007).

    Google Scholar 

  18. V. V. Efremov, V. I. Kober, V. A. Lebedev, et al., “Thermodynamic properties of aluminum-rich Pr–Al alloys,” Izv. Vuzov. Tsvet. Metall., No. 3, 142–144 (1975).

    Google Scholar 

  19. V. I. Kober, I. F. Nichkov, S. P. Raspopin, and V. M. Kuz’minykh, “Thermodynamic properties of saturated solutions of praseodymium with fusible metals,” in: L. F. Kozin (ed.), Thermodynamics of Metallic Systems [in Russian], Nauka, Alma-Ata (1979), Part. 2, pp. 67–71.

  20. V. I. Kononenko, V. G. Shevchenko, and A. L. Sukhman, “Liquid-phase interaction of praseodymium and aluminum,” Izv. Akad. Nauk SSSR. Metally, No. 6, 85–88 (1979).

    Google Scholar 

  21. G. Borzone, N. Parodi, R. Ferro, et al., “Heat capacity and phase equilibria in rare earth alloy systems. Rrich R–Al alloys (R = La, Pr and Nd),” J. Alloys Compd., 320, No. 2, 242–250 (2001).

    Article  Google Scholar 

  22. C. Deenadas, A. W. Thompson, R. S. Craig, and W. E. Wallace, “Low temperature heat capacities of Laves phase lanthanide–aluminum compounds,” J. Phys. Chem. Solids, 32, No. 8, 1853–1866 (1971).

    Article  Google Scholar 

  23. M. Ivanov, V. Berezutski, and N. Usenko, “Mixing enthalpies in liquid alloys of manganese with the lanthanides,” J. Mater. Res., 102, No. 3, 277–281 (2011).

    Google Scholar 

  24. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, No. 4, 319–427 (1991).

    Article  Google Scholar 

  25. M. A. Shevchenko, M. I. Ivanov, V. V. Berezutskii, et al., “Thermodynamic properties of Ni–Sc and Ni–Y alloys,” Zh. Fiz. Khim., 88, No. 6, 909–914 (2014).

    Google Scholar 

  26. M. I. Ivanov, V. V. Berezutskii, M. O. Shevchenko, et al., “Interaction in alloys of europium-containing systems,” Dop. Nats. Akad. Nauk Ukrainy, No. 8, 90–99 (2013).

    Google Scholar 

  27. M. O. Shevchenko, V. G. Kudin, V. V. Berezutskii, et al., “Thermodynamic properties of Al–Sc alloys,” Powder Metall. Met. Ceram., 53, No. 3–4, 243–249 (2014).

    Article  Google Scholar 

  28. V. S. Sudavtsova, M. A. Shevchenko, V. V. Berezutskii, et al., “Thermodynamic properties and phase equilibria in Al (Si)–Ce binary alloys,” Zh. Fiz. Khim., 88, No. 5, 736–746 (2014).

    Google Scholar 

  29. M. O. Shevchenko, V. V. Berezutski, M. I. Ivanov, et al., “Thermodynamic properties of alloys of the binary Al–Sm, Sm–Sn and ternary Al–Sm–Sn systems,” J. Phase Equilib. Diffus., 36, No. 1, 39–52 (2015).

    Article  Google Scholar 

  30. F. R. Boer, R. Boom, W. C. M. Mattens, et al., Cohesion in Metals. Transition Metal Alloys, Elsevier Science Publishers B.V., North-Holland Physics Publishing, Amsterdam (1988), p. 758.

  31. D. S. Kanibolotsky, N. V. Golovataya, O. A. Bieloborodova, and V. V. Lisnyak, “Calorimetric investigation of liquid Al–Ga–Gd alloys,” Thermochim. Acta, 421, 111–115 (2004).

    Article  Google Scholar 

  32. A. Pasturel, C. Chatillon-Colinet, A. Percheron-Guegan, and J. C. Achard, “Thermodynamic study of the valence state of ytterbium in YbAl2 and YbAl3 compounds,” J. Less-Common Met., 90, 21–27 (1983).

    Article  Google Scholar 

  33. Y.-B. Kang, A. D. Pelton, P. Chartrand, and C. D. Fuerst, “Critical evaluation and thermodynamic optimization of the Al–Ce, Al–Y, Al–Sc, and Mg–Sc binary systems,” CALPHAD, 32, No. 2, 413–422 (2008).

    Article  Google Scholar 

  34. G. Cacciamani, S. de Negri, A. Saccone, and R. Ferro, “The Al–R–Mg (R = Gd, Dy, Ho) systems. Part II: Thermodynamic modelling of the binary and ternary systems,” Intermetallics, 11, 1135–1151 (2003).

    Article  Google Scholar 

  35. G. Cacciamani, A. Saccone, S. De Negri, and R. Ferro, “The Al–Er–Mg ternary system. Part II: Thermodynamic modeling,” J. Phase Equilib., 23, No. 1, 38–50 (2002).

    Article  Google Scholar 

  36. L. G. Zhang, H. Q. Dong, G. X. Huang, et al., “Thermodynamic assessment of the Al–Cu–Gd system,” CALPHAD, 33, 664–672 (2009).

    Article  Google Scholar 

  37. H. Bo, L. Liu, X. Xiong, and Z. Jin, “Thermodynamic assessment of the Al–Dy, Dy–Zr, and Al–Dy–Zr systems,” Chin. Sci. Bull., 59, No. 15, 1738–1746 (2014).

    Article  Google Scholar 

  38. T. Tokunaga, H. Kominato, S. Iikubo, and H. Ohtani, “Thermodynamic analysis of phase equilibria in the Mg–Al–Ho ternary system,” Mater. Trans. Jap. Inst. Met., 54, No. 5, 647–655 (2013).

    Google Scholar 

  39. S. Sun, D. Q. Yi, Y. Chen, and C. Wu, “Thermodynamic properties of binary alloys of Al–Er and Si–Er,” Chin. J. Nonferrous Met., 19, No. 9, 1580–1586 (2009).

    Google Scholar 

  40. S. Lin, Z. Nie, H. Huang, et al., “Thermodynamic calculation of Er–X and Al–Er–X compounds existing in Al–Mg–Mn–Zr–Er alloy,” Trans. Nonferrous Met. Soc. China, 20, 682–867 (2010).

    Article  Google Scholar 

  41. V. V. Berezutskii, M. A. Shevchenko, M. I. Ivanov, and V. S. Sudavtsova, “Thermodynamic properties of Ni–Eu and Ni–Yb liquid alloys,” Zh. Fiz. Khim., 88, No. 9, 1297–1306 (2014).

    Google Scholar 

  42. V. S. Sudavtsova, M. I. Ivanov, V. V. Berezutskii, et al., “Thermodynamic properties of Eu–Sn melts,” Zh. Fiz. Khim., 85, No. 12, 2394–2397 (2011).

    Google Scholar 

  43. M. I. Ivanov, N. I. Usenko, V. V. Berezutskii, and N. V. Kotova, Thermodynamics of Binary Melts of Lanthanides with Transition Metals: Monograph [in Ukrainian], Kyiv Derzh. Nats. Univ., Kyiv (2012), p. 87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Shevchenko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 55, Nos. 1–2 (507), pp. 104–118, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, M.O., Berezutskii, V.V., Ivanov, M.I. et al. Thermodynamic Properties of Binary Al–Pr Alloys. Powder Metall Met Ceram 55, 78–90 (2016). https://doi.org/10.1007/s11106-016-9783-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-016-9783-2

Keywords

Navigation