Skip to main content
Log in

MicroRNA: A Novel Micro-machineries to Target Crop Plants for Tolerance to Temperature Stress

  • REVIEW
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Natural ecosystems are considered to be under severe threat from global climate change. Abiotic and biotic factors of the planet are influenced by climate change, which is a dynamic, complex system of alterations in environmental conditions. Abiotic stress is considered one of the main factors restricting plant growth and development worldwide. The most prevalent ones are heat stress (HS), chilling stress (CS), and freezing stress (FS), which are brought on by adverse temperature variations. It lessens physiologic responses in plants and hinders development as well as photosynthesis. Emerging research has shown that microRNA (miRNA)-mediated regulatory mechanisms may strengthen the potential of plants to withstand abiotic stress, ensuring sustainable agricultural production. Studies related to unraveling target genes that are miRNA-dependent have been carried out in the context of the several ways that miRNA controls gene expression in eukaryotes. Plant miRNAs also control diverse biological processes owing to the way they interact with target genes. It has a significant effect on the growth, morphogenesis, and stress response of plants. The goal of miRNA-based research is to understand and develop methods for breeding crops that are resistant to stress and for agricultural development. This study is focused on the latest research on miRNAs and their targets involved in plant responses to temperature stress. Additionally, the current review provides insights into the production of miRNAs and the current pattern of expression against temperature stress, along with the computational methods that anticipate collaboration among the miRNAs and their target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

MiRNA:

MicroRNA

MAPK:

Mitogen-activated protein kinases

MicroPC:

PC

PMRD:

Plant MicroRNA Database

DT:

Decision trees

SVMs:

Support vector machines

NB:

Naive Bayes

LSSVMs:

Least-square support vector machines

References

  • Afzal M, Hindawi SES, Alghamdi SS et al (2022) Potential breeding strategies for improving salt tolerance in crop plants. J Plant Growth Regul 1–23

  • Ahmed W, Xia Y, Zhang H et al (2019) Identification of conserved and novel miRNAs responsive to heat stress in flowering Chinese cabbage using high-throughput sequencing. Sci Rep 9:1–11

    Article  Google Scholar 

  • Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488

    Article  CAS  PubMed  Google Scholar 

  • Aslam M, Sugita K, Qin Y, Rahman A (2020) Aux/IAA14 regulates microRNA-mediated cold stress response in Arabidopsis roots. Int J Mol Sci 21:8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aydinoglu F (2020) Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. Planta 251:1–15

    Article  Google Scholar 

  • Ballarino M, Pagano F, Girardi E et al (2009) Coupled RNA processing and transcription of intergenic primary microRNAs. Mol Cell Biol 29:5632–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S (2022) Mechanism of temperature stress acclimation and the role of transporters in plants. In: Plant perspectives to global climate changes. Academic Press, pp 413–457

  • Bhogireddy S, Mangrauthia SK, Kumar R et al (2021) Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct Integr Genomics 21:313–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouba I, Kang Q, Luan Y-S, Meng J (2019) Predicting miRNA-lncRNA interactions and recognizing their regulatory roles in stress response of plants. Math Biosci 312:67–76

    Article  CAS  PubMed  Google Scholar 

  • Cambiagno DA, Giudicatti AJ, Arce AL et al (2021) HASTY modulates miRNA biogenesis by linking pri-miRNA transcription and processing. Mol Plant 14:426–439

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Rechavi O (2022) Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 23:185–203

    Article  CAS  PubMed  Google Scholar 

  • Dada EG, Bassi JS, Chiroma H et al (2019) Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5:e01802

    Article  PubMed  PubMed Central  Google Scholar 

  • Das PP, Rana S, Muthamilarasan M, Kannan M, Ghazi IA (2021) Omics approaches for understanding plant defense response. Omics Technologies for Sustainable Agriculture and Global Food Security 1:41–83

    Article  Google Scholar 

  • de Amorim TS, Pedro DLF, Paschoal AR (2022) MicroRNA databases and tools. Methods Mol Biol 2257:131–166

    Article  PubMed  Google Scholar 

  • Deng F, Zeng F, Shen Q et al (2022) Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends Plant Sci 27:890–907

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Hu B, Zhang C (2022) microRNAs and their roles in plant development. Front Plant Sci 13

  • dos Santos TB, da Silva Ferreira MF, Marques I et al (2022) Current challenges and genomic advances towards the development resilient coffee genotypes to abiotic stresses. Genomic Des Abiotic Stress Resist Tech Crop 41–69

  • Froehlich J (2022) Parallel genetics of gene regulatory sequences in Caenorhabditis elegans. Humboldt Universitaet zu Berlin (Germany)

  • Goswami K, Sanan-Mishra N (2022) RNA-Seq for revealing the function of the transcriptome. In: Bioinformatics. Academic Press, pp 105–129

  • Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ (2007) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajieghrari B, Farrokhi N (2022) Plant RNA-mediated gene regulatory network. Genomics 114:409–442

    Article  CAS  PubMed  Google Scholar 

  • Hernandez Y, Goswami K, Sanan-Mishra N (2020) Stress induced dynamic adjustment of conserved miR164: NAC module. Plant-Environment Interact 1:134–151

    Article  Google Scholar 

  • Hu J, Cai J, Xu T, Kang H (2022) Epitranscriptomic mRNA modifications governing plant stress responses: underlying mechanism and potential application. Plant Biotechnol J 20(12):2245–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Zhang L, Chen X (2022) Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Brief Bioinform 23:bbac397

  • Huo C, Zhang B, Wang R (2022) Research progress on plant noncoding RNAs in response to low-temperature stress. Plant Signal Behav 17:2004035

    Article  PubMed  Google Scholar 

  • Jatan R, Lata C (2019) Role of microRNAs in abiotic and biotic stress resistance in plants. Proc Indian Natl Sci Acad 553–567

  • Khan MKR, Liu F, Wang B et al (2022) Breeding cotton for heat tolerance. In: Cotton breeding and biotechnology. CRC Press 113–138

  • Kobayashi Y, Tian S, Ui-Tei K (2022) The siRNA off-target effect is determined by base-pairing stabilities of two different regions with opposite effects. Genes (basel) 13:319

    Article  CAS  PubMed  Google Scholar 

  • Kong C, Su H, Deng S et al (2022) Global DNA methylation and mRNA-miRNA variations activated by heat shock boost early microspore embryogenesis in cabbage (Brassica oleracea). Int J Mol Sci 23:5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Nong W, Zhao S et al (2022) Differential microRNA expression, microRNA arm switching, and microRNA: long noncoding RNA interaction in response to salinity stress in soybean. BMC Genomics 23:1–13

    Google Scholar 

  • Lohani N, Singh MB, Bhalla PL (2022) Biological parts for engineering abiotic stress tolerance in plants. BioDesign Res 2022

  • Mandal M, Poddar N, Kumar S (2022) Identification of novel noncoding RNAs in plants by big data analysis. In: Machine learning and systems biology in genomics and health. Singapore, Springer Nature Singapore, pp 123–145

    Chapter  Google Scholar 

  • Matthews C, Arshad M, Hannoufa A (2019) Alfalfa response to heat stress is modulated by microRNA156. Physiol Plant 165:830–842

    Article  CAS  PubMed  Google Scholar 

  • Meher PK, Begam S, Sahu TK et al (2022) ASRmiRNA: abiotic stress-responsive miRNA prediction in plants by using machine learning algorithms with pseudo K-tuple nucleotide compositional features. Int J Mol Sci 23:1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhuantong W, Wichadakul D (2009) MicroPC (μPC): a comprehensive resource for predicting and comparing plant microRNAs. BMC Genomics 10:1–8

    Article  Google Scholar 

  • Mitra D, Mitra D, Bensaad MS et al (2022) Evolution of Bioinformatics and its impact on modern bio-science in the twenty-first century: special attention to pharmacology, plant science and drug discovery. Comput Toxicol 100248

  • Negi N, Sharma S, Bansal N et al (2022) Effect of abiotic stresses on plant systems and their mitigation. Plant Prot Chem Biol 59

  • Pagano L, Rossi R, Paesano L et al (2021) miRNA regulation and stress adaptation in plants. Environ Exp Bot 184:104369

    Article  CAS  Google Scholar 

  • Patel P, Yadav K, Ganapathi TR, Penna S (2019) Plant miRNAome: cross talk in abiotic stressful times. Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches I:25–52

    Google Scholar 

  • Patzel V, Rutz S, Dietrich I et al (2005) Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nat Biotechnol 23:1440–1444

    Article  CAS  PubMed  Google Scholar 

  • Ragupathy R, Ravichandran S, Mahdi M et al (2016) Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 6:1–15

    Article  Google Scholar 

  • Raza A, Ashraf F, Zou X et al (2020) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. Plant Ecophysiol Adapt Under Clim Chang Mech Perspect I Gen Consequences Plant Responses 117–145

  • Raza A, Tabassum J, Kudapa H, Varshney RK (2021) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 41:1209–1232

    Article  PubMed  Google Scholar 

  • Rooy SSB, Ghabooli M, Salekdeh GH et al (2023) Identification of novel cold stress responsive microRNAs and their putative targets in ‘Sultana’grapevine (Vitis vinifera) using RNA deep sequencing. Acta Physiol Plant 45:1–15

    Article  Google Scholar 

  • Šečić E, Kogel K-H, Ladera-Carmona MJ (2021) Biotic stress-associated microRNA families in plants. J Plant Physiol 263:153451

    Article  PubMed  Google Scholar 

  • Shaik R, Ramakrishna W (2014) Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice. Plant Physiol 164:481–495

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Mallikarjuna MG, Yathish KR, Karjagi CG, Lohithaswa HC (2022) Genomic and bioinformatic resources for next-generation breeding approaches towards enhanced stress tolerance in cereals. In: Next-Generation plant breeding approaches for stress resilience in cereal crops. Singapore, Springer Nature Singapore, pp 453–493

    Chapter  Google Scholar 

  • Shekhawat K, Almeida-Trapp M, García-Ramírez GX, Hirt H (2022) Beat the heat: Plant-and microbemediated strategies for crop thermotolerance. Trends Plant Sci 27(8):802–813

    Article  CAS  PubMed  Google Scholar 

  • Sihag P, Sagwal V, Kumar A et al (2021) Discovery of miRNAs and development of heat-responsive miRNA-SSR markers for characterization of wheat germplasm for terminal heat tolerance breeding. Front Genet 12

  • Sindhu Meena K, Suriya S (2020) A survey on supervised and unsupervised learning techniques. In: Proceedings of international conference on artificial intelligence, smart grid and smart city applications: AISGSC 2019. Springer International Publishing, pp 627−644

  • Sun M, Shen Y, Chen Y, Wang Y, Cai X, Yang J et al (2022) Osa-miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA-mediated signaling. Plant Physiol 189(4):2500–2516

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari R, Rajam MV (2022) RNA-and miRNA-interference to enhance abiotic stress tolerance in plants. J Plant Biochem Biotechnol 1–16

  • Ul Hassan M, Rasool T, Iqbal C et al (2021) Linking plants functioning to adaptive responses under heat stress conditions: a mechanistic review. J Plant Growth Regul 1–18

  • Volná A, Bartas M, Pečinka P et al (2022) What do we know about barley miRNAs? Int J Mol Sci 23:14755

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhou Y, Richards AM (2021) Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 11:8771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Deng XW, Zhu D (2022) From molecular basics to agronomic benefits: Insights into noncoding RNA-mediated gene regulation in plants. J Integr Plant Biol 64(12):2290–2308

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Xu J, Gao T et al (2021) Molecular mechanism of modulating miR482b level in tomato with botrytis cinerea infection. BMC Plant Biol 21:1–11

    Article  Google Scholar 

  • Xiao J (ed) (2022) MicroRNA: from bench to bedside

  • Yamaguchi S, Naganuma M, Nishizawa T et al (2022) Structure of the Dicer-2–R2D2 heterodimer bound to a small RNA duplex. Nature 607:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Zhang N, Wang Q et al (2021) The effect of low temperature stress on the leaves and microRNA expression of potato seedlings. Front Ecol Evol 9:727081

    Article  Google Scholar 

  • Yang T, Wang Y, Teotia S et al (2019) The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep 9:2832

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Liu F, Zhang Y et al (2017) Cold-responsive miRNAs and their target genes in the wild eggplant species Solanum aculeatissimum. BMC Genomics 18:1–13

    Article  Google Scholar 

  • Zhang F, Yang J, Zhang N et al (2022a) Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Front Plant Sci 13:919243

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhu J, Gong Z, Zhu J-K (2022b) Abiotic stress responses in plants. Nat Rev Genet 23:104–119

    Article  PubMed  Google Scholar 

  • Zhang M, An P, Li H et al (2019) The miRNA-mediated post-transcriptional regulation of maize in response to high temperature. Int J Mol Sci 20:1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Zang S, Zou W et al (2022) Long non-coding RNAs: new players in plants. Int J Mol Sci 23:9301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Zhang Y, Tang R et al (2019) Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. BMC Genomics 20:1–16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N. G. conceptualized. N. G. and J. A. N. writing. M. A. M., S. M., J. I. M., and M. A. B. figure making and drafting of manuscript.

Corresponding author

Correspondence to Nadia Gul.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, N., Nowshehri, J.A., Mir, M.A. et al. MicroRNA: A Novel Micro-machineries to Target Crop Plants for Tolerance to Temperature Stress. Plant Mol Biol Rep 42, 48–56 (2024). https://doi.org/10.1007/s11105-023-01413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-023-01413-6

Keywords

Navigation