Skip to main content

Advertisement

Log in

Floral Transcriptome Analyses of Four Paphiopedilum Orchids with Distinct Flowering Behaviors and Development of Simple Sequence Repeat Markers

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Paphiopedilum orchids are evergreen perennials with distinct flowering behaviors; however, little genetic information hindered the understanding of these interesting flowering patterns. In this study, the floral transcriptomes of two Paphiopedilum species, Paphiopedilum concolor and Paphiopedilum hirsutissimum, and two popular cultivars were characterized. A total of 42.4–68.5 million clean reads were generated from these four Paphiopedilum orchid floral buds. De novo assembly yielded 73,201–79,086 unigenes with average lengths of 765–848 bp for these four floral transcriptomes, of which 42.5–43.1 % were annotated in public protein databases. With 8,019 unique protein-coding genes shared, similar function classifications were found among the four orchid floral transcriptomes, and 113 Paphiopedilum floral unigenes were found to be homologous to flowering genes in Arabidopsis. Of these flowering genes, many regulatory genes, namely, MIKC, NAC, MYB, WRKY, bZIP, bHLH transcription factors, and protein kinases and plant hormone signaling-related genes were identified. Notably, one gene, PIF4 may play vital roles for regulation flowering in warm seasons. A phylogeny clustering based on MIKC MADS-box gene family among Paphiopedilum, rice, and Arabidopsis classified the 61 Paphiopedilum members into 11 subfamilies, which provided some clues on floral organ specification and development in Paphiopedilum. Differentiation expression analysis among the four floral transcriptomes demonstrated that complicated molecular functions or biological processes, such as transmembrane transport, transcription regulation, signal transduction, defense response, etc., might be responsible for the differences among these orchid floral development processes, and partial of these expression genes were validated by qRT-PCR. Finally, 20,969 EST-SSRs were identified as potential molecular markers, and 15,137 SSRs were successful for primer designing. Of 62 candidate SSR primer pairs, 51 were successfully amplified with expected sizes and exhibited polymorphisms among 14 genotypes of Paphiopedilum orchids. Our data should not only provide valuable sequence resources for novel gene discovery and marker-assisted studies in Paphiopedilum but also give us some new insights into understanding of the molecular mechanisms of flowering and floral development in Paphiopedilum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BLAST:

Basic Local Alignment Search Tool

bp:

Base pair

cDNA:

Complementary DNA

EST:

Expressed sequence tag

FLM:

FLOWERING LOCUS M

MADS:

MCM1-AGAMOUS-DEFICIENS-SRF

MSI1:

MULTICOPY SUPPRESSOR OF IRA1

NAC:

NAM, ATAF1/2, CUC2

PCR:

polymerase chain reaction

PIF4:

PHYTOCHROME INTERACTING FACTOR4

qRT-PCR:

Real-time quantitative PCR

References

  • Acri-Nunes-Miranda R, Mondragón-Palomino M (2014) Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front Plant Sci 5:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    PubMed  CAS  Google Scholar 

  • Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2, e106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bäurle I, Smith L, Baulcombe DC, Dean C (2007) Widespread role for the flowering time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318:109–112

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Theiβen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bergonzi S, Albani MC, van Themaat EVL, Nordstrom KJV, Wang R, Schneeberger K, Moerland PD, Coupland G (2013) Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094–1097

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang M, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  PubMed  CAS  Google Scholar 

  • Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50:1425–1438

    Article  PubMed  CAS  Google Scholar 

  • Chang YY, Chu YW, Chen CW, Leu WM, Hsu HF, Yang CH (2011) Characterization of Oncidium ‘Gower Ramsey’ transcriptomes using 454 GS-FLX pyrosequencing and their application to the identification of genes associated with flowering time. Plant Cell Physiol 52:1532–1545

    Article  PubMed  CAS  Google Scholar 

  • Chen LJ, Liu KW, Xiao XJ, Tsai WC, Hsiao YY, Huang J, Liu ZJ (2012) The anther steps onto the stigma for self-fertilization in a slipper orchid. PLoS One 7, e37478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung SY, Choi SH (2012) Genetic variability and relationships among interspecific hybrid cultivar and parental species of Paphiopedilum via ribosomal DNA sequence analysis. Plant Syst Evol 298:1897–1907

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signalling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    PubMed  Google Scholar 

  • Fornara F, Coupland G (2009) Plant phase transitions make a SPLash. Cell 138:625–627

    Article  PubMed  CAS  Google Scholar 

  • Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Gonçalves J, Davis SJ (2012) EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 24:428–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM–ATAF1, 2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–2748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung JH, Seo PJ, Kang SK, Park CM (2011) miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol Biol 76:35–45

    Article  PubMed  CAS  Google Scholar 

  • Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44:300–313

    Article  PubMed  CAS  Google Scholar 

  • Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–245

    Article  PubMed  CAS  Google Scholar 

  • Kumpatla SP, Mukhopadhyay S (2005) Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome 48:985–998

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Kantety R, Yu JK, Sorrells M (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS et al (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Gene Dev 21:397–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J 55:832–843

    Article  PubMed  CAS  Google Scholar 

  • Lee YI, Chang FC, Chung MC (2011) Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady’s slipper orchids (Paphiopedilum). Ann Bot 108:113–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Li D, Ye Q, Zhu G (2007) Analysis on the germplasm resources and genetic relationships among hybrid Cymbidium cultivars and native species with RAPD markers. Agric Sci China 6:922–929

    Article  CAS  Google Scholar 

  • Li DM, Wang JH, Peng SL, Zhu GF, Lǚ FB (2012) Molecular cloning and characterization of two novel NAC genes from Mikania micrantha (Asteraceae). Genet Mol Res 11:4383–4401

    Article  PubMed  CAS  Google Scholar 

  • Li X, Luo J, Yan T, Xiang L, Jin F, Qin D, Sun C, Xie M (2013) Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome. PLoS ONE 8, e85480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li DM, Lǚ FB, Zhu GF, Sun YB, Xu YC, Jiang MD, Liu JW, Wang Z (2014) Identification of warm day and cool night conditions induced flowering related genes from a Phalaenopsis orchid hybrid by suppression subtractive hybridization. Genet Mol Res 13:7037–7051

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Ye QS, Li RH, Leng JY, Li MR, Wang XJ, Li HQ (2012) Transcriptional regulations on the low-temperature-induced floral transition in an Orchidaceae species, Dendrobium nobile: an expressed sequence tags analysis. Comp Funct Genomics 2012:757801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM (2009) CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant Physiol 150:834–843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo X, Sun X, Liu B, Zhu D, Bai X, Cai H, Ji W, Cao L, Wu J, Wang M, Ding X, Zhu Y (2013) Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis. PLoS One 8, e73295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marquardt S, Boss PK, Hadfield J, Dean C (2006) Additional targets of the Arabidopsis autonomous pathway members, FCA and FY. J Exp Bot 57:3379–3386

    Article  PubMed  CAS  Google Scholar 

  • McWatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM et al (2007) ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol 144:391–401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  PubMed  CAS  Google Scholar 

  • Mondragón-Palomino M, Theißen G (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann Bot 104:583–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondragón-Palomino M, Theißen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'. Plant J 66:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mutasa-Göttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989

    Article  PubMed  CAS  Google Scholar 

  • Ogiso E, Takahashi Y, Sasaki T, Yano M, Izawa T (2010) The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol 152:808–820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ÓMaoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, Kwasniewska K, Das P, Lohan AJ, Loftus B, Graciet E, Wellmer F (2013) Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25:2482–2503

    Article  PubMed  CAS  Google Scholar 

  • Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, Chen HH (2011) The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol 52:1515–1531

    Article  PubMed  CAS  Google Scholar 

  • Pré M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proveniers MC, van Zanten M (2013) High temperature acclimation through PIF4 signaling. Trends Plant Sci 18:59–64

    Article  PubMed  CAS  Google Scholar 

  • Quail P, Boylan M, Parks B, Short T, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–680

    Article  PubMed  CAS  Google Scholar 

  • Sablowski RWM, Meyerowitz EM (1998) A homolog of no apical meristem is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J 20:433–445

    Article  PubMed  CAS  Google Scholar 

  • Sawa M, Kay SA (2011) GIGANTEA directly activates flowering locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:11698–11703

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Thong Z, Gong X, Shen Q, Gan Y, Yu H (2014) The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS affecting flowering genes in Arabidopsis. Development 141:1303–1312

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG (2003) Evolution of flowering in response to day length: flipping the CONSTANS switch. Bioessays 35:829–832

    Article  CAS  Google Scholar 

  • Simpson GG (2004) The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol 7:570–574

    Article  PubMed  CAS  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  PubMed  CAS  Google Scholar 

  • Steinbach Y, Hennig L (2014) Arabidopsis MSI1 functions in photoperiodic flowering time control. Front Plant Sci 5:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Stone JM, Trotochaud AE, Walker JC, Clark SE (1998) Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol 117:1217–1225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    Article  PubMed  CAS  Google Scholar 

  • Su WR, Chen WS, Koshioka M, Mander LN, Hung LS, Chen WH, Fu YM, Huang KL (2001) Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Plant Physiol Biochem 39:45–50

    Article  CAS  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Teh SL, Chan WS, Abdullah JO, Namasivayam P (2011) Development of expressed sequence tag resources for Vanda Mimi Palmer and data mining for EST-SSR. Mol Biol Rep 38:3903–3909

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai WC, Fu CH, Hsiao YY, Huang YM, Chen LJ, Wang M, Liu ZJ, Chen HH (2013) OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol 54:e7(1–8)

    Article  CAS  Google Scholar 

  • Valverde F (2011) CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 62:2453–2463

    Article  PubMed  CAS  Google Scholar 

  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707

    Article  PubMed  CAS  Google Scholar 

  • Wang YT (1995) Phalaenopsis orchid light requirement during the induction of spiking. Hortscience 30:59–61

    Google Scholar 

  • Wang L, Chong K (2010) Auxin, brassinosteroids, and G-protein signaling. Signaling and Communication in Plants :135–154. doi:10.1007/978-3-642-03524-1_8

  • Wang R, Albani MC, Vincent C, Bergonzi S, Luan M, Bai Y, Kiefer C, Castillo R, Coupland G (2011) AaTFL1 confers an age-dependent response to vernalization in perennial Arabis alpina. Plant Cell 23:1307–1321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Wang X, He Q, Liu X, Xu W, Li L, Gao J, Wang F (2012) Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Plant Cell Rep 31:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo SK, Hong SM, Lee JS, Ahn JH (2011) A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control. Mol Cells 31:281–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • You FM, Huo N, Gu YQ, Luo M, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinf 9:253

    Article  CAS  Google Scholar 

  • Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123:1325–1336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Guangzhou Municipal Science and Technology Project (No. 12C14071654) and the Guangdong Academy of Agricultural Sciences Fund (No. 201019). The authors would like to acknowledge the Shanghai Biotechnology Corporation (Shanghai) for assistance with raw data processing and the related bioinformatics analysis.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Mei Li.

Additional information

Dong-Mei Li and Wei Wu contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Somatic chromosomes of four Paphiopedilum orchids. a Paphiopedilum concolor, 2n = 2x = 26. b Paphiopedilum hirsutissimum, 2n = 2x = 26. c Paphiopedilum hybrid Maudiae Red, 2n = 2x = 34. d Paphiopedilum hybrid Maudiae Green, 2n = 2x = 32 (DOC 437 kb)

Fig. S2

Overview of the sequencing and assembly of the four Paphiopedilum orchid floral transcriptomes sequences. a Overview of contig assembly. b Overview of scaffold assembly. c Overview of unigene assembly (DOC 432 kb)

Fig. S3

GO functional classification for the four Paphiopedilum orchid floral unigenes by BLASTx with E value cutoff 1.0E − 5 against the rice protein database. a Biological process. b Molecular function. c Cellular component (DOC 676 kb)

Fig. S4

PCR products amplified using primer pairs among 14 Paphiopedilum orchids and separated by electrophoresis on 6 % nondenaturing polyacrylamide gels. M indicates 100 bp DNA marker. Lanes 1–14 represent DNA samples from Paphiopedilum orchids P. dianthum, P. micranthum, P. hirsutissimum, Paphiopedilum hybrid Maudiae Red, Paphiopedilum hybrid Maudiae Green, P. concolor, P. wenshanense, P. bellatulum, P. areeanum, P. henryanum, P. hangianum, P. villosum, P. emersonii, and P. malipoense, respectively. P EST-SSR primer pairs (DOC 4164 kb)

Table S1

Primer sequences for real-time PCR (DOC 39 kb)

Table S2

KEGG pathway annotation of floral unigenes from the four Paphiopedilum orchids (DOC 1482 kb)

Table S3

Common protein-coding genes expressed in the four Paphiopedilum orchid floral buds (XLSX 589 kb)

Table S4

Putative flowering time-related genes in the four Paphiopedilum orchid floral transcriptomes (XLSX 81 kb)

Table S5

Putative transcription factor genes in the four Paphiopedilum orchid floral transcriptomes (XLSX 260 kb)

Table S6

MIKCc MADS-box proteins from Arabidopsis, rice, and four Paphiopedilum orchids (DOC 73 kb)

Table S7

List of differentially expressed genes between two among the four floral transcriptomes (XLSX 563 kb)

Table S8

Primer pairs designed from the EST-derived SSRs (XLSX 3678 kb)

Table S9

The 62 primer pairs for validation EST-SSR markers (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DM., Wu, W., Zhang, D. et al. Floral Transcriptome Analyses of Four Paphiopedilum Orchids with Distinct Flowering Behaviors and Development of Simple Sequence Repeat Markers. Plant Mol Biol Rep 33, 1928–1952 (2015). https://doi.org/10.1007/s11105-015-0886-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0886-6

Keywords

Navigation