Skip to main content
Log in

Ectopic Expression of a Proteinase Inhibitor I4 (MtPiI4) Gene from Medicago truncatula Confers Plant Resistance to Pseudomonas syringae pv. Tomato DC3000

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Proteinase inhibitors (PIs) play an important role in plant responses to biotic and environmental stimuli, but little is known about the role of PIs in mediating plant immune responses to microbial infection. In this study, a gene named proteinase inhibitor I4 (MtPiI4) was isolated from Medicago truncatula and characterized as a serpin family gene with a typically conserved DUF716 domain. MtPiI4 was differentially expressed in seed, root, leaf, stem and flower tissues. Expression of MtPiI4 was induced by inoculation with a typical bacterial pathogen Pseudomonas syringae pv. tomato DC3000 strain (Pst DC3000). It was also up-regulated by methyl jasmonate (MeJA) treatment. To identify its function in regulating plant immunity against Pst DC3000, we constructed transgenic Arabidopsis plants over-expressing MtPiI4. Compared to wild type, 35S::MtPiI4 plants showed enhanced resistance to Pst DC3000. Expression of JA biosynthetic and responsive genes such as LOX2, PDF1.2, and VSP1 was depressed in 35S::MtPiI4 plants as compared to wild type, suggesting that the JA signaling response was attenuated in 35S::MtPiI4 plants upon Pst DC3000 exposure. Furthermore, over-expression of MtPiI4 led to up-regulation of NPR1 (nonexpressor of pathogenesis-related gene 1—a negative regulator of JA signaling) and down-regulation of MAPK4 (mitogen-activated protein kinase4—a positive regulator of JA signaling). These results indicate that MtPiI4 regulation of plant resistance to Pst DC3000 is involved in the JA signaling transduction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2
Fig. 3a–h
Fig. 4a–h
Fig. 5a,b
Fig. 6a–d
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarez-Alfageme F, Maharramov J, Carrillo L, Vandenabeele S, Vercammen D, Van Breusegem F, Smagghe G (2011) Potential use of a serpin from Arabidopsis for pest control. PLoS ONE 6:e20278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505

    Article  PubMed  CAS  Google Scholar 

  • Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inzé D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    Article  PubMed  CAS  Google Scholar 

  • Bollhöner B, Zhang B, Stael S, Denancé N, Overmyer K, Goffner D, Van Breusegem F, Tuominen H (2013) Post mortem function of AtMC9 in xylem vessel elements. New Phytol 200:498–510

    Article  PubMed  CAS  Google Scholar 

  • Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GED (2008) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA 107:15011–15015

    Article  PubMed  PubMed Central  Google Scholar 

  • Fluhr R, Lampl N, Roberts TH (2012) Serpin protease inhibitors in plant biology. Physiol Plant 145:95–102

    Article  PubMed  CAS  Google Scholar 

  • Gerber PA, Hevezi P, Buhren BA, Martinez C, Schrumpf H, Gasis M, Grether-Beck S, Krutmann J, Homey B, Zlotnik A (2013) Systematic identification and characterization of novel human skin-associated genes encoding membrane and secreted proteins. PLoS ONE 8:e63949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartl M, Giri AP, Kaur H, Baldwin IT (2010) Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development. Plant Cell 22:4158–4175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nurnberger T, Sheen J (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575

    Article  PubMed  CAS  Google Scholar 

  • Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272:91–98

    Article  PubMed  CAS  Google Scholar 

  • Hu LB, Zhang T, Yang ZM, Zhou W, Shi ZQ (2009) Inhibition of fengycins on the production of fumonisin B1 from Fusarium verticillioides. Lett Appl Microbiol 48:84–89

    Article  PubMed  CAS  Google Scholar 

  • John AG (2011) Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr Protein Pept Sci 12:409–416

    Article  Google Scholar 

  • Jongsma MA, Beekwilder J (2011) Co-evolution of insect proteases and plant protease inhibitors. Curr Protein Pept Sci 12:437–447

    Article  PubMed  CAS  Google Scholar 

  • Justesen J, Hartmann R, Kjeldgaard NO (2000) Gene structure and function of the 2'-5'-oligoadenylate synthetase family. Cell Mol Life Sci 57:1593–1612

    Article  PubMed  CAS  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105

    Article  PubMed  PubMed Central  Google Scholar 

  • Keith RC, Keith LM, Hernandez-Guzman G, Uppalapati SR, Bender CL (2003) Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Microbiology 149:1127–1138

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, Park Y (2009) Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci 10:2860–2872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL, Mackey D (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–759

    Article  PubMed  CAS  Google Scholar 

  • Kim S-M, Bae C, Oh S-K, Choi D (2013) A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants. Mol Plant Pathol 14:557–566

    Article  PubMed  CAS  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Lampl N, Alkan N, Davydov O, Fluhr R (2013) Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. Plant J 74:498–510

    Article  PubMed  CAS  Google Scholar 

  • Lampl N, Budai-Hadrian O, Davydov O, Joss TV, Harrop SJ, Curmi PM, Roberts TH, Fluhr R (2010) Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J Biol Chem 285:13550–13560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800

    Article  PubMed  CAS  Google Scholar 

  • Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, Medina D, Allred DC (2012) Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res 72:4574–4586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lomate PR, Hivrale VK (2012) Wound and methyl jasmonate induced pigeon pea defensive proteinase inhibitor has potency to inhibit insect digestive proteinases. Plant Physiol Biochem 57:193–199

    Article  PubMed  CAS  Google Scholar 

  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2010) Callose Deposition: A Multifaceted Plant Defense Response. Mol Plant-Microbe Interact 24:183–193

    Article  CAS  Google Scholar 

  • McDowell JM (2011) Plant science-Beleaguered immunity. Science 334:1354–1355

    Article  PubMed  CAS  Google Scholar 

  • Mosolov VV, Valueva TA (2008) Proteinase inhibitors in plant biotechnology: a review. Appl Biochem Microbiol 44:233–240

    Article  CAS  Google Scholar 

  • Okada N, Yamamoto T, Watanabe M, Yoshimura Y, Obana E, Yamazaki N, Kawazoe K, Shinohara Y, Minakuchi K (2011) Identification of TMEM45B as a protein clearly showing thermal aggregation in SDS–PAGE gels and dissection of its amino acid sequence responsible for this aggregation. Protein Expr Purif 77:118–123

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Ryan C, Liljegren D (1988) Proteinase inhibitors I and II in fruit of wild tomato species: transient components of a mechanism for defense and seed dispersal. Planta 175:527–531

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Roberts T, Hejgaard J (2008) Serpins in plants and green algae. Funct Integr Genomics 8:1–27

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1989) Proteinase inhibitor gene families: Strategies for transformation to improve plant defenses against herbivores. BioEssays 10:20–24

    Article  PubMed  CAS  Google Scholar 

  • Schlüter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet M-C, Cloutier C, Michaud D (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. J Exp Bot 61:4169–4183

    Article  PubMed  CAS  Google Scholar 

  • Shindo T, Misas-Villamil JC, Hörger AC, Song J, van der Hoorn RAL (2012) A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS ONE 7:e29317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song JB, Huang SQ, Dalmay T, Yang ZM (2012) Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS. Plant Cell Physiol 53:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J-P, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5:1370–1378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Linde K, Hemetsberger C, Kastner C, Kaschani F, van der Hoorn RA, Kumlehn J, Doehlemann G (2012) A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24:1285–1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan J-A, De Rycke R, Brackenier A, Inzé D, Harris JL, Van Breusegem F (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 364:625–636

    Article  PubMed  CAS  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143

    Article  PubMed  CAS  Google Scholar 

  • Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZS, Yang SN, Li H, Zhu CC, Liu ZP, Yang ZM (2013) Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula. J Hazard Mater 252–253:123–131

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate Dr. De Yue Yu at College of Agriculture in Nanjing Agricultural University for providing M. Truncatula seeds. We thank Dr. Yun Peng Wang at Plant Protection College in Nanjing Agricultural University for providing Pst DC3000 strain.

Funding

This research was supported by the National Natural Science Foundation of China (31071343; 31200204), the China Postdoctoral Science Foundation (201003593) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (200910).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Min Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary data (Online Resource) are online available. (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Chen, J., Zhou, Z.S. et al. Ectopic Expression of a Proteinase Inhibitor I4 (MtPiI4) Gene from Medicago truncatula Confers Plant Resistance to Pseudomonas syringae pv. Tomato DC3000. Plant Mol Biol Rep 33, 1686–1696 (2015). https://doi.org/10.1007/s11105-015-0865-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0865-y

Keywords

Navigation