Skip to main content
Log in

Small world but large differences: cultivar-specific secondary metabolite-mediated phyllosphere fungal homeostasis in tea plant (Camellia sinensis)

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Phyllosphere microbes are closely linked to plant health and are important for the maintenance of host community stability. Tea plants (Camellia sinensis) can synthesize abundant secondary metabolites (SMs), however, it is unclear how they affect tea plant phyllosphere homeostasis.

Methods

We investigated the effects of secondary metabolites of two tea plant cultivars (Longjing43 and Zhongcha108) that have different levels of resistance to anthracnose on the composition, function, assembly and network of phyllosphere fungi.

Results

We found that the phyllosphere fungal compositions of Longjing43 and Zhongcha108 were distinct, with certain fungal pathogens significantly enriched in the susceptible cultivar Longjing43 (e.g., Fusarium), which had a higher relative abundance of phytopathogenic functional groups. In addition, the phyllosphere fungal community assembly of the resistant cultivar Zhongcha108 with a higher habitat niche breadth was more influenced by stochastic processes. More importantly, the fungal network of Zhongcha108 exhibited higher complexity and stability, indicating a more resilient network structure. Random forest and partial least squares path models revealed that secondary metabolites, fungal community diversity, composition and function essentially determined network stability. (−)-Epigallocatechin-3-gallate (EGCG) and caffeine (CAF) were the most important predictors of phyllosphere fungal network stability in 2018 and 2019, respectively. Rare fungal taxa were particularly important in maintaining phyllosphere homeostasis.

Conclusions

Our study suggests that secondary metabolites may mediate phyllosphere fungal homeostasis in tea plants. These findings highlight the importance of secondary metabolites in shaping the phyllosphere fungal community and provide ideas for regulating plant resistance to pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw data of ITS amplicon sequencing has been uploaded to NCBI BioProject database under accession number: PRJNA942060. The other data of this study are available from the FigShare: https://doi.org/10.6084/m9.figshare.22770863.

References

  • Bag S, Mondal A, Banik A (2022) Exploring tea (Camellia sinensis) microbiome: insights into the functional characteristics and their impact on tea growth promotion. Microbiol Res 254:254

    Article  Google Scholar 

  • Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10:885–896

    Article  PubMed  Google Scholar 

  • Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    Article  CAS  PubMed  Google Scholar 

  • Barberan A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Cernava T, Chen XY, Krug L, Li HX, Yang MF, Berg G (2019) The tea leaf microbiome shows specific responses to chemical pesticides and biocontrol applications. Sci Total Environ 667:33–40

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WD, Ren KX, Isabwe A, Chen HH, Liu M, Yang J (2019) Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome 7:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD et al (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ding JL, Jiang X, Guan DW, Zhao BS, Ma MC, Zhou BK et al (2017) Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese mollisols. Appl Soil Ecol 111:114–122

    Article  ADS  Google Scholar 

  • Du SC, Dini-Andreote F, Zhang N, Liang CL, Yao ZY, Zhang HJ et al (2020) Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem. Appl Environ Microb 86:13

    Article  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan LC, Han WY (2020) Soil respiration after forest conversion to tea gardens: a chronosequence study. Catena 190:104532

    Article  CAS  Google Scholar 

  • Fan KK, Weisenhorn P, Gilbert JA, Chu HY (2018) Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol Biochem 125:251–260

    Article  CAS  Google Scholar 

  • Farjalla VF, Srivastava DS, Marino NAC, Azevedo FD, Dib V, Lopes PM et al (2012) Ecological determinism increases with organism size. Ecology 93:1752–1759

    Article  PubMed  Google Scholar 

  • Ferrenberg S, O’Neill SP, Knelman JE, Todd B, Duggan S, Bradley D et al (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Fortmann-Roe S (2015) Consistent and clear reporting of results from Diverse modeling techniques: the A3 method. J Stat Softw 66:1–23

    Article  Google Scholar 

  • Guimera R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn AS, Konwar KM, Louca S, Hanson NW, Hallam SJ (2016) The information science of microbial ecology. Curr Opin Microbiol 31:209–216

    Article  PubMed  Google Scholar 

  • Hassani MA, Duran P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrmann M, Geesink P, Richter R, Kusel K (2021) Canopy position has a stronger effect than tree species Identity on phyllosphere bacterial diversity in a floodplain hardwood forest. Microb Ecol 81:157–168

    Article  ADS  CAS  PubMed  Google Scholar 

  • Houseman GR, Mittelbach GG, Reynolds HL, Gross KL (2008) Perturbations alter community convergence, divergence, and formation of multiple community states. Ecology 89:2172–2180

    Article  PubMed  Google Scholar 

  • Huang RL, Zhang ZY, Xiao X, Zhang N, Wang XY, Yang ZP et al (2019) Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils. Sci Total Environ 692:333–343

    Article  ADS  CAS  PubMed  Google Scholar 

  • Humphrey PT, Whiteman NK (2020) Insect herbivory reshapes a native leaf microbiome. Nat Ecol Evol 4:221–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both Leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca Species) phyllosphere. Appl Environ Microb 76:8117–8125

    Article  ADS  CAS  Google Scholar 

  • Jiao S, Yang YF, Xu YQ, Zhang J, Lu YH (2020) Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J 14:202–216

    Article  PubMed  Google Scholar 

  • Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V et al (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11:853–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemen AC, Agler MT, Kemen E (2015) Host–microbe and microbe–microbe interactions in the evolution of obligate plant parasitism. New Phytol 206:1207–1228

    Article  CAS  PubMed  Google Scholar 

  • Khanna S, Pardi DS, Kelly CR, Kraft CS, Dhere T, Henn MR et al (2016) A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis 214:173–181

    Article  PubMed  Google Scholar 

  • Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Laforest-Lapointe I, Paquette A, Messier C, Kembel SW (2017) Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546:145–147

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T et al (2017) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. Adv Bot Res 82:101–133

    Article  CAS  Google Scholar 

  • Liang YT, Xiao X, Nuccio EE, Yuan MT, Zhang N, Xue K et al (2020) Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ Microbiol 22:1327–1340

    Article  CAS  PubMed  Google Scholar 

  • Liu HW, Brettell LE, Singh B (2020) Linking the phyllosphere microbiome to plant health. Trends Plant Sci 25:841–844

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J et al (2015) Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol Biochem 83:29–39

    Article  CAS  Google Scholar 

  • Liu B, Yao J, Chen Z, Ma B, Li H, Wancheng P et al (2022) Biogeography, assembly processes and species coexistence patterns of microbial communities in metalloids-laden soils around mining and smelting sites. J Hazard Mater 425:127945

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Ling TJ, Su XQ, Jiang B, Zhao M (2020b) Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus Niger, Aspergillus tamarii and aspergillus fumigatus. Food Chem 334:127560

    Article  PubMed  Google Scholar 

  • Ma B, Wang Y, Ye S, Liu S, Stirling E, Gilbert JA et al (2020a) Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto H, Fan XY, Wang Y, Kusstatscher P, Duan J, Wu SL et al (2021) Bacterial seed endophyte shapes disease resistance in rice. Nat Plants 7:60–72

    Article  CAS  PubMed  Google Scholar 

  • Meyer KM, Leveau JHJ (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168:621–629

    Article  ADS  PubMed  Google Scholar 

  • Miller ET, Svanback R, Bohannan BJM (2018) Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol Evol 33:926–935

    Article  PubMed  Google Scholar 

  • Mitchell EG, Harris S, Kenchington CG, Vixseboxse P, Roberts L, Clark C et al (2019) The importance of neutral over niche processes in structuring Ediacaran early animal communities. Ecol Lett 22:2028–2038

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris CE, Kinkel LL (2002) Fifty years of phyllosphere microbiology: significant contributions to research in related fields. In: Lindow SE, Hecht-Poinar EI, Elliot V (eds) Phyllosphere Microbiology, APS Press, pp 353–363

  • Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  • Ning D, Deng Y, Tiedje JM, Zhou J (2019) A general framework for quantitatively assessing ecological stochasticity. Proc Natl Acad Sci USA 116:16892–16898

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyirabuhoro P, Gao XF, Ndayishimiye JC, Xiao P, Mo YY, Ganjidoust H et al (2021) Responses of abundant and rare bacterioplankton to temporal change in a subtropical urban reservoir. FEMS Microbiol Ecol 97:fiab036

    Article  CAS  PubMed  Google Scholar 

  • Paranjape K, Bedard E, Shetty D, Hu MQ, Choon FCP, Prevost M et al (2020) Unravelling the importance of the eukaryotic and bacterial communities and their relationship with Legionella spp. ecology in cooling towers: a complex network. Microbiome 8:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Coaker GL, Leveau JHJ (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ren GD, Zhu CW, Alam MS, Tokida T, Sakai H, Nakamura H et al (2015) Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 392:27–44

    Article  CAS  Google Scholar 

  • Ruppel S, Krumbein A, Schreiner M (2008) Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions. Microb Ecol 56:364–372

    Article  ADS  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V et al (2012) Anticipating critical transitions. Science 338:344–348

    Article  ADS  CAS  PubMed  Google Scholar 

  • Schmidt TSB, Rodrigues JFM, von Mering C (2014) Ecological consistency of SSU rRNA-Based operational taxonomic units at a global scale. Plos Comput Biol 10:e1003594

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Chen XD, Zhang XL, Hamel C, Cui XW, Chen J et al (2017) Changes in arbuscular mycorrhizal fungal attributes along a chronosequence of black Locust (Robinia pseudoacacia) plantations can be attributed to the plantation-induced variation in soil properties. Sci Total Environ 599:273–283

    Article  ADS  PubMed  Google Scholar 

  • Shu DT, Guo YQ, Zhang BG, Zhang CF, Van Nostrand JD, Lin YB et al (2021) Rare prokaryotic sub-communities dominate the complexity of ecological networks and soil multinutrient cycling during long-term secondary succession in China’s Loess Plateau. Sci Total Environ 774:145737

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740

    Article  PubMed  Google Scholar 

  • Stegen JC, Lin XJ, Fredrickson JK, Chen XY, Kennedy DW, Murray CJ et al (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Chang MM, Li HJ, Zhang ZL, Chen Q, Chen Y et al (2019) Endophytic Bacteria as contributors to Theanine Production in Camellia sinensis. J Agr Food Chem 67:10685–10693

    Article  CAS  Google Scholar 

  • Sun H, Pan BZ, He HR, Zhao GN, Hou YM, Zhu PH (2021) Assembly processes and co-occurrence relationships in the bacterioplankton communities of a large river system. Ecol Indic 126:107643

    Article  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa TM, Singh BK (2020) Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  CAS  PubMed  Google Scholar 

  • Tu QC, Yan QY, Deng Y, Michaletz ST, Buzzard V, Weiser MD et al (2020) Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol Biochem 148:107897

    Article  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hao X, Lu Q, Wang L, Qian W, Li N et al (2018) Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Hortic Res 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang Y, Cao H, Hao X, Zeng J, Yang Y et al (2016a) Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae PLoS ONE 11:e0148535

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WD, Xin HH, Wang ML, Ma QP, Wang L, Kaleri NA et al (2016b) Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci 7:385

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang R, Zheng Q, Deng Y, Van Nostrand JD, Zhou JZ et al (2016c) Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis. ICES J Mar Sci 73:865–875

    Article  Google Scholar 

  • Wang YC, Qian WJ, Li NN, Hao XY, Wang L, Xiao B et al (2016d) Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum Fructicola J Agr Food Chem 64:6685–6693

    Article  CAS  Google Scholar 

  • Wang BH, Zheng XF, Zhang HJ, Xiao FS, He ZL, Yan QY (2020) Keystone taxa of water microbiome respond to environmental quality and predict water contamination. Environ Res 187:10

    Article  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Win PM, Matsumura E, Fukuda K (2018) Diversity of tea endophytic fungi: cultivar- and tissue preferences. Appl Ecol Env Res 16:677–695

    Article  Google Scholar 

  • Xu P, Fan X, Mao Y, Cheng H, Xu A, Lai W et al (2022) Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J Adv Res 39:49–60

    Article  PubMed  Google Scholar 

  • Xu P, Stirling E, Xie H, Li W, Lv X, Matsumoto H et al (2023) Continental scale deciphering of microbiome networks untangles the phyllosphere homeostasis in tea plant. J Adv Res 44:13–22

    Article  CAS  PubMed  Google Scholar 

  • Xue YY, Chen HH, Yang JR, Liu M, Huang BQ, Yang J (2018) Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J 12:2263–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Sun X, He C, Maitra P, Li XC, Guo LD (2019) Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan MM, Guo X, Wu LW, Zhang Y, Xiao NJ, Ning DL et al (2021) Climate warming enhances microbial network complexity and stability. Nat Clim Change 11:343–348

    Article  ADS  Google Scholar 

  • Zhang SJ, Zeng YH, Zhu JM, Cai ZH, Zhou J (2022) The structure and assembly mechanisms of plastisphere microbial community in natural marine environment. J Hazard Mater 421:126780

    Article  CAS  Google Scholar 

  • Zhou JL, Theroux SM, de Mesquita CPB, Hartman WH, Tian Y, Tringe SG (2022) Microbial drivers of methane emissions from unrestored industrial salt ponds. ISME J 16:284–295

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhou Y, Tang X, Zhang Y, Jang KS, Szekely AJ et al (2021) Resource aromaticity affects bacterial community successions in response to different sources of dissolved organic matter. Water Res 190:116776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Xiaoshan Xu and Huimin Zhang for their help with the manuscript figure.

Funding

This study was financially supported by the Zhejiang Provincial Natural Science Foundation (LY22C160001), the Fundamental Research Funds for the Provincial Universities of Zhejiang (2020YQ001), Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding-Tea Plant (2021C02067-7), the Scientific Research and Development Foundation of Zhejiang A & F University (2020FR016; 2021LFR046) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2021-TRICAAS).

Author information

Authors and Affiliations

Authors

Contributions

ZKT, XCW, and YCW proposed ideas, designed experiments and supervised the study. KD and WYL performed experiments, analyzed data, and wrote the manuscript. HZR and FX conducted field experiments, collected the data, and performed laboratory analyses. YTZ and JHZ provided critical comments on the study and revised the manuscript. The authors contributed to and approved the final manuscript.

Corresponding authors

Correspondence to Zaikang Tong, Xinchao Wang or Yuchun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant financial or non-financial interests to disclose in this paper.

Additional information

Responsible Editor: Beatriz Vazquez-de-Aldana.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3.87 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Lv, W., Ren, H. et al. Small world but large differences: cultivar-specific secondary metabolite-mediated phyllosphere fungal homeostasis in tea plant (Camellia sinensis). Plant Soil (2024). https://doi.org/10.1007/s11104-024-06579-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06579-w

Keywords

Navigation