Skip to main content

Advertisement

Log in

Kenaf and soybean intercropping affects morpho-physiological attributes, antioxidant capacity and copper uptake in contaminated soil

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Intercropping can affect the growth and elemental absorption of crops. Copper (Cu) pollution has become a worldwide environmental problem due to its effect on human health and food security. Well-designed intercropping of crops could be an effective strategy for sustainable production and remediation of contaminated soil.

Methods

A pot experiment was conducted to investigate the effects of monoculture and intercropping on morpho-physiological attributes, antioxidant capacity, root growth and Cu uptake of kenaf and soybean grown under different levels of Cu in soil.

Results

Intercropping was conducive to the accumulation of biomass and chlorophyll in kenaf and soybean under Cu stress. Mutual intercropping of kenaf and soybean increased antioxidant enzymes activity and decreased malondialdehyde content in both the plants under Cu stress. In addition, intercropping increased soluble sugars, soluble proteins and proline content in kenaf and soybean under Cu stress except that proline content were not significantly different in kenaf. Moreover, intercropping alleviate the negative effects of Cu by reducing its soil availability and uptake in the plants. At the same time, bio-accumulation factor (BAF) and translocation factor (TF) were declined.

Conclusion

Mutual intercropping of kenaf and soybean is favorable to promote plant growth and biomass production of both the species with reduced Cu uptake in plant tissues. Present findings strengthen our understanding about effectiveness of intercropping on Cu contaminated soils for sustainable crop production and soil remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be made available on a reasonable request.

References

  • Adeniyan ON, Aluko OA, Olanipekun SO et al (2014) Growth and yield performance of cassava/maize intercrop under different plant population density of maize. J Agric Sci 6:35–40

    Google Scholar 

  • Adeyemi NO, Atayese MO, Olubode AA, Akan ME (2020) Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. J Plant Nutr 43:487–499. https://doi.org/10.1080/01904167.2019.1685101

    Article  CAS  Google Scholar 

  • Arbaoui S, Evlard A, Mhamdi MW, Campanella B, Paul R, Bettaieb T (2013) Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation 24:563–567. https://doi.org/10.1007/s10532-013-9626-5

    Article  CAS  PubMed  Google Scholar 

  • Awal MA, Koshi H, Ikeda T (2006) Radiation interception and use by maize/peanut intercrop canopy. Agric For Meteorol 139:74–83

    Article  Google Scholar 

  • Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P (2019) Jasmonic acid application triggers detoxification of lead (pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere 235:734–748

    Article  CAS  PubMed  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant soil 39:205–207

    Article  CAS  Google Scholar 

  • Beedy TL, Snapp SS, Akinnifesi FK, Sileshi GW (2010) Impact of Gliricidiasepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric Ecosyst Environ 138:139–146

    Article  Google Scholar 

  • Ben-chuan Z, Ying Z, Ping C, Ben-chuan ZHENG, Ying ZHOU, Ping CHEN, Xiao-na ZHANG, Qing DU, Huan YANG, Xiao-chun WANG, Feng YANG, Te XIAO, Long LI, Wen-yu YANG, Tai-wen YONG (2022) Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. J Integr Agric 21:1755–1771. https://doi.org/10.1016/S2095-3119(21)63730-9

    Article  Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman JF, Lutts S, Cai G, Gea G (2019) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106. https://doi.org/10.1016/j.envexpbot.2018.10.017

    Article  CAS  Google Scholar 

  • Bian F, Zhong Z, Li C, Zhang X, Gu L, Huang Z, Gai X, Huang Z (2021) Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. J Hazard Mater 416:125898. https://doi.org/10.1016/j.jhazmat.2021.125898

    Article  CAS  PubMed  Google Scholar 

  • Bian FY, Zhong ZK, Wu SC, Zhang XP, Yang CB, Xiong XY (2018) Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil. Int J Phytoremediation 20:490–498. https://doi.org/10.1080/15226514.2017.1374339

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PP, Jones HG, Karley AJ, Li L, McKenzie BM, Pakeman RJ, Paterson E, Schöb C, Shen J, Squire G, Watson CA, Zhang C, Zhang F, Zhang J, White PJ (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117

    Article  PubMed  Google Scholar 

  • Brunetto G, Bastos de Melo GW, Terzano R, Del Buono D, Astolfi S, Tomasi N, Pii Y, Mimmo T, Cesco S (2016) Copper accumulation in vineyard soils: rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 162:293–307. https://doi.org/10.1016/j.chemosphere.2016.07.104

    Article  CAS  PubMed  Google Scholar 

  • Budi S, Cholid M (2018) Do new varieties of maize and kenaf could improve growth and production when cultivated by intercropping in seasonal flooded area of bonorowo land? RJOAS 8:80. https://doi.org/10.18551/rjoas.2018-08.55

    Article  Google Scholar 

  • Cahill JF, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM, St Clair CC (2010) Plants integrate information about nutrients and neighbors. Science 328:1657

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Luo J, Wang X, Chen ZQ, Liu GQ, Khan MB, Kang KJ, Feng Y, He ZL, Yang XE (2020) Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Sci Total Environ 723:138152. https://doi.org/10.1016/j.scitotenv.2020.138152

    Article  CAS  PubMed  Google Scholar 

  • Carranca C, Torres MO, Madeira M (2015) Underestimated role of legume roots for soil N fertility. Agron Sustainable Dev 35:1095–1102

    Article  CAS  Google Scholar 

  • Cenkci S, Ciğerci İH, Yıldız M, Özay C, Bozdağ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • Chaffai MA, Elhammadi TN, Seybou B, Tekitek B, Ferjani ME (2007) Altered fatty acid profile of polar lipids in maize seedlings in response to excess copper. J Agron Crop Sci 193:207e217

    Article  Google Scholar 

  • Chandra R, Kang H (2016) Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For Sci Technol 12:55–61. https://doi.org/10.1080/21580103.2015.1044024

    Article  Google Scholar 

  • Chen P, Chen T, Li ZQ, Jia RX, Luo DJ, Tang MQ, Lu H, Hu YL, Yue J, Huang Z (2020) Transcriptome analysis revealed key genes and pathways related to cadmium-stress tolerance in Kenaf (Hibiscus cannabinus L). Ind Crop Prod 158:112970. https://doi.org/10.1016/j.indcrop.2020.112970

    Article  CAS  Google Scholar 

  • Chen G, Li J, Han H, Du R, Wang X (2022) Physiological and molecular mechanisms of plant responses to copper stress. Int J Mol Sci 23(21):12950. https://doi.org/10.3390/ijms232112950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Li Z, Luo D, Jia R, Lu H, Tang M, Hu Y, Yue J, Huang Z (2021) Comparative transcriptomic analysis reveals key genes and pathways in two different cadmium tolerance kenaf (Hibiscus cannabinus L.) cultivars. Chemosphere 263:128211. https://doi.org/10.1016/j.chemosphere.2020.128211

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhou T, Zhang C, Wang K, Liu J, Lu J, Xu K (2015) Rational phosphorus application facilitates the sustainability of the wheat/maize/soybean relay strip intercropping. Syst PLoS ONE 10:e0141725

    Article  Google Scholar 

  • Choppala G, Saifullah N, Bolan S, Bibi M, Iqbal Z, Rengel A, Kunhikrishnan N, Ashwath YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391. https://doi.org/10.1080/07352689.2014.903747

    Article  CAS  Google Scholar 

  • Chu GX, Shen QR, Li YL, Zhang J, Wang SQ (2004) Researches on bidirectional N transfer between the intercropping systems of ground nut with rice cultivated in aerobic soil using 15 N foliar labeling method. Acta Ecol Sin 24:278–283

    Google Scholar 

  • Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao SG, Zhang FS, Werf WVD (2015) Intercropping enhances soil carbon and nitrogen. Glob Change Biol 21:1715–1726. https://doi.org/10.1111/gcb.12738

    Article  Google Scholar 

  • Cong W-F, Hoffland E, Li L, Six J, Sun J-H, Bao X-G, Zhang F-S, Van Der Werf W (2014) Intercropping enhances soil carbon and nitrogen. Glob Chang Biol 21:1715–1726

    Article  PubMed  Google Scholar 

  • Cui E, Cui B, Fan X, Li S, Gao F (2021) Ryegrass (Lolium multiflorum L.) and indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals. Sci Total Environ 784:147093. https://doi.org/10.1016/j.scitotenv.2021.147093

    Article  CAS  PubMed  Google Scholar 

  • Cui T, Fang L, Wang M, Jiang M, Shen GT (2018) Intercropping of gramineous pasture ryegrass (Lolium perenne L.) and leguminous forage alfalfa (Medicago sativa L.) increases the resistance of plants to heavy metals. J Chem 7:1–11. https://doi.org/10.1155/2018/7803408

    Article  CAS  Google Scholar 

  • Curtright AJ, Tiemann LK (2021) Meta-analysis dataset of soil extracellular enzyme activities in intercropping systems. Data Brief 38:107284. https://doi.org/10.1016/j.dib.2021.107284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danish S et al (2019) Effect of foliar application of Fe and banana peel waste biochar on growth, chlorophyll content and accessory pigments synthesis in spinach under chromium (IV) toxicity. Open Agric 4:381–390

    Article  Google Scholar 

  • De Conti L, Ceretta CA, Melo GWB, Tiecher TL, Silva LOS, Garlet LP, Mimmo T, Cesco S, Brunetto G (2019) Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere 216:147–156

    Article  PubMed  Google Scholar 

  • Dias MC, Mariz-Pontec N, Santosc C (2019) Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant PhysiolBiochem 137:121–129. https://doi.org/10.1016/j.plaphy.2019.02.005

    Article  CAS  Google Scholar 

  • Dissanayaka DMSB, Maruyama H, Masuda G, Wasaki J (2015) Interspecific facilitation of P acquisition in intercroppingof maize with white lupin in two contrasting soils as influencedby different rates and forms of P supply. Plant Soil 390:223–236. https://doi.org/10.1007/s11104-015-2392-x

    Article  CAS  Google Scholar 

  • Dotaniya ML, Dotaniya CK, Solanki P, Meena VD, Doutaniya RK (2020) Lead contamination and its dynamics in soil–plant system. In: Gupta D, Chatterjee S, Walther C (eds) Lead in plants and the environment. Radionuclides and Heavy Metals in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-21638-2_5

  • Duan Y, Shen J, Zhang X, Duan Yu, Shen J, Zhang X, Wen Bo, Ma Y, Wang Y, Fang W, Zhu X (2019) Effects of soybean–tea intercropping on soil-available nutrients and tea quality. Acta Physiol Plant 41:140. https://doi.org/10.1007/s11738-019-2932-8

    Article  CAS  Google Scholar 

  • Duchene O, Vian J-F, Celette F (2017) Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric Ecosyst Environ 240:148–161. https://doi.org/10.1016/J.AGEE.2017.02.019

    Article  Google Scholar 

  • Fageria NK, Moreira A (2011) Chapter Four - The role of mineral nutrition on root growth of crop plants. In: Sparks DL (ed) Advances in Agronomy. Academic, 110:251–331, ISSN 0065-2113, ISBN 9780123855312. https://doi.org/10.1016/B978-0-12-385531-2.00004-9

  • Feng Q, Song S, Yang Y, Amee M, Chen L, Xie Y (2021) Comparative physiological andmetabolic analyzes of two italian ryegrass (Lolium multiflorum) cultivars with contrastingsalinity tolerance. Physiol Plant 172:1688–1699

    Article  CAS  PubMed  Google Scholar 

  • Gao Y-L, Sun Z-X, Bai W, Feng L-S, Cai Q, Feng C, Zhang Z (2016) Spatial distribution characteristics of root system and the yield in maize-peanut intercropping system. J Maize Sci 24:79–87

    Google Scholar 

  • Gitari HI, Karanja NN, Gachene CKK et al (2018) Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. Field Crops Res 222:78–84. https://doi.org/10.1016/j.fcr.2018.03.019

    Article  Google Scholar 

  • Guo Y, Xiao Q, Zhao X, Wu Z, Dai Z, Zhang M, Qiu C, Long S, Wang Y (2023) Phytoremediation with kenaf (Hibiscus cannabinus L.) for cadmium-contaminated paddy soil in southern China: translocation, uptake, and assessment of cultivars. Environ Sci Pollut Res Int 30:1244–1252. https://doi.org/10.1007/s11356-022-22111-y

    Article  CAS  PubMed  Google Scholar 

  • Hauggaard-Nielsen H, Gooding M, Ambus P, Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009) Pea–barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in european organic cropping systems. Field Crop Res 113:64–71. https://doi.org/10.1016/j.fcr.2009.04.009

    Article  Google Scholar 

  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifyingenzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085e1093

    Article  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L et al (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Husak V (2015) Copper and copper-containing pesticides: metabolism, toxicity and oxidative stress. J Vasyl Stefanyk Precarpath Natl Univ 2:38–50

    Article  Google Scholar 

  • Huss SP, Holmes KD (2022) Benefits and risks of Intercropping for Crop Resilience and Pest Management. J Econ Entomol 115:1350–1362. https://doi.org/10.1093/jee/toac045

    Article  CAS  PubMed  Google Scholar 

  • Hussein Y, Amin G, Askora A, Gahin H (2019) Phytotoxicity remediation in wheat (Triticum aestivum L.) cultivated in cadmium- contaminated soil by intercropping design. Biosci Res 16:2678–2689

    Google Scholar 

  • Inal A, Gunes A, Yhang F, Cakmak I (2007) Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiol Biochem 45:350–356

    Article  CAS  PubMed  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–75

    CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soil-misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Jurik TW, Van K (2004) Microenvironment of a corn-soybean-oat strip intercrop system. Field Crop Res 90:335–349

    Article  Google Scholar 

  • Kohli SK, Neha H, Vandana G, Shagun B, Anket S, Kanika K, Saroj A, Kumar TA, Puja O, Victorovich KY, Evgenovich KY, Bhardwaj R (2017) ROS signaling in plants under heavy metal stress. Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress, Springer Singapore. 185–214. https://doi.org/10.1007/978-981-10-5254-5_8

  • Layek J, Das A, Mitran T et al (2018) Cereal + legume intercropping: an option for improving productivity and sustaining soil health. In: Meena R, Das A, Yadav G, Lal R et al (eds) Legumes for soil health and sustainable management. Springer, Singapore

    Google Scholar 

  • Li C, Dong Y, Li H, Shen J, Zhang F (2014) The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L) and faba bean (Vicia faba L). PLoS ONE 9(12):e115804

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CY, He XH, Zhu SS, Zhou H, Wang Y, Li Y et al (2009) Crop diversity for yield increase. PLoS ONE 4:e8049

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Li YY, Wu HM, Zhang FF, Li CJ, Li XX, Lambers H, Li L (2016a) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci U S A 113:6496–6501. https://doi.org/10.1073/pnas.1523580113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Sun M, Zhang H, Xu N, Sun G (2016b) Use of mulberry–soybean intercropping in salt–alkali soil impacts the diversity of the soil bacterial community. Microb Biotechnol 9:293–304. https://doi.org/10.1111/1751-7915.12342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-Y, Pang F-H, Sun J-H, Li L, Cheng X (2010) Effects of root barrier between intercropped maize and faba bean and nitrogen (N) application on the spatial distributions and morphology of crops’ roots. J China Agric Univ 15:13–19

    Google Scholar 

  • Li L, Sun J, Zhang F, Li XL, Rengel Z, Yan SC (2001) Wheat/maize or wheat/soybean strip intercropping II. Recovery or compensation of maize and soybean after wheat harvesting. F Crop Res 71:173–181. https://doi.org/10.1016/S0378-4290(01)00157-5

    Article  Google Scholar 

  • Li ZR, Wang JX, An LZ, Tan JB, Zhan FD, Wu J, Zu YQ (2019) Effect of root exudates of intercropping Vicia faba and Arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. Int J Phytoremediation 21:4–13. https://doi.org/10.1080/15226514.2018.1523867

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang Z, Bao X, Sun J, Yang S, Wang P, Wang C, Wu J, Liu X, Tian X, Wang V, Li J, Wang Y, Xia H, Mei P, Wang X, Zhao J, Yu R, Zhang W, Che Z, Gui L, Callaway R, Tilman D, Li L (2021) Long-term increased grain yield and soil fertility from intercropping. Nat Sustain 4:943–950

    Article  Google Scholar 

  • Liang L, Li X, Li H, Peng X, Zhang R, Tang W, Dong Y, Tang Y (2023) Intercropping affects the physiology and cadmium absorption of pakchoi, lettuce, and radish seedlings. Environ Sci Pollut Res 30:4744–4753. https://doi.org/10.1007/s11356-022-22381-6

    Article  CAS  Google Scholar 

  • Liao D, Zhang C, Li H, Lambers H, Zhang FS (2020) Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil. Plant Soil 448:587–601. https://doi.org/10.1007/s11104-020-04460-0

    Article  CAS  Google Scholar 

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Article  PubMed  Google Scholar 

  • Lin LJ, Jin Q, Liu YJ, Ning B, Liao MA, Luo L (2014) Screening of a new cadmium hyperaccumulator, Galinsoga Parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method. Environ Toxicol Chem 33:2422–2428

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Huang L, Wen Z, Fu Y, Liu Q, Xu S, Li Z, Liu C, Yu C, Feng Y (2023) Effects of intercropping on safe agricultural production and phytoremediation of heavy metal-contaminated soils. Sci Total Environ 875:162700. https://doi.org/10.1016/j.scitotenv.2023.162700

    Article  CAS  PubMed  Google Scholar 

  • Liu YX, Sun JH, Zhang FF, Li L (2020) The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant Soil 447:39–53

    Article  CAS  Google Scholar 

  • Liu J, Wang J, Lee S, Wen R (2018) Copper-caused oxidative stress triggers the activation of antioxidant enzymes via ZmMPK3 in maize leaves. PloS One 13:e0203612. https://doi.org/10.1371/journal.pone.0203612

  • Lu RK (1999) Analytical methods of soil agrochemistry. Chinese Agriculture Science and Technology Press, Beijing

  • Ma H, Zhou J, Ge J, Ma H, Zhou J, Ge J, Nie J, Zhao J, Xue Z, Hu Y, Yang Y, Peixoto L, Zang H, Zeng Z (2022) Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil 480:71–84. https://doi.org/10.1007/s11104-022-05554-7

    Article  CAS  Google Scholar 

  • Mala M, Mollah MMI, Baishnab M (2020) Importance of intercropping for biodiversity conservation. J Sci Technol Environ Inform 10:709–716

    Article  Google Scholar 

  • Malviya MK, Solanki MK, Li CN et al (2021) Sugarcane-legume intercropping can enrich the soil microbiome and plant growth. Front Sustain Food Syst 5–2021. https://doi.org/10.3389/fsufs.2021.606595

  • Marastoni L, Sandri M, Pii Y, Valentinuzzi F, Brunetto G, Cesco S, Mimmo T (2019) Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping. Chemosphere 214:563–578. https://doi.org/10.1016/j.chemosphere.2018.09.127

    Article  CAS  PubMed  Google Scholar 

  • Mensah E, Kyei-Baffour N, Ofori E, Obeng G (2009) Influence of human activities and land use on heavy metal concentrations in irrigated vegetables in Ghana and their health implications. Appropriate technologies for environmental protection in the developing world. Springer, Dordrecht, pp 9–14

    Google Scholar 

  • Mir AR, Pichtel J, Hayat S (2021) Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals 34:737–759. https://doi.org/10.1007/s10534-021-00306-z

    Article  CAS  PubMed  Google Scholar 

  • Mir MS, Saxena A, Kanth RH et al (2022) Role of intercropping in sustainable insect-pest management: a review. Int J Environ Clim Change 12:3390–3404

    Article  Google Scholar 

  • Mitra S, Chakraborty AJ, Tareq AM et al (2022) Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. J King Saud Univ - Sci 34:101865. https://doi.org/10.1016/j.jksus.2022.101865

    Article  Google Scholar 

  • Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, Brahmachari K, Shankar T, Bhadra P, Palai JB et al (2021) Intercropping—a low input agricultural strategy for food and environmental security. Agronomy 11:343. https://doi.org/10.3390/agronomy11020343

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    Article  CAS  PubMed  Google Scholar 

  • Nyawade SO, Karanja NN, Gachene CKK et al (2019) Intercropping optimizes soil temperature and increases crop water productivity and radiation use efficiency of rainfed potato. Am J Potato Res 96:457–471. https://doi.org/10.1007/s12230-019-09737-4

    Article  CAS  Google Scholar 

  • Pan J, Cao S, Xu G, Rehman M, Xin L, Luo D, Wang C, Fang W, Xiao H, Liao C, Chen P (2023) Comprehensive analysis reveals the underlying mechanism of arbuscular mycorrhizal fungi in kenaf cadmium stress alleviation. Chemosphere 314:137566. https://doi.org/10.1016/j.chemosphere.2022.137566

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Lu R, Li H, Lin LJ, Li LP, Xiang J, Chen L, Tang YW (2021) Effects of mutual intercropping on cadmium accumulation in seedlings of three varieties of eggplant. Int J Environ Anal Chem 101:1761–1772. https://doi.org/10.1080/03067319.2019.1691180

    Article  CAS  Google Scholar 

  • Qian X, Zang HD, Xu HH, Hu YG, Ren CZ, Guo LC, Wang CL, Zeng ZH (2018) Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: yield advantages and economic benefits. Field Crops Res 223:33–40. https://doi.org/10.1016/j.fcr.2018.04.004

    Article  Google Scholar 

  • Qian X, Zhou J, Luo B, Qian X, Zhou J, Luo B, Dai H, Hu Y, Ren C, Peixoto L, Guo L, Wang C, Zamanian K, Zhao B, Zang H, Zeng Z (2022) Yield advantage and carbon footprint of oat/sunflower relay strip intercropping depending on nitrogen fertilization. Plant Soil 481:581–594. https://doi.org/10.1007/s11104-022-05661-5

    Article  CAS  Google Scholar 

  • Rehman M, Liu L, Wang Q, Rehman M, Liu L, Wang Q, Saleem MH, Bashir S, Ullah S, Peng D (2019a) Copper environmental toxicology, recent advances, and future outlook: a review. Environ Sci Pollut Res 26:18003–18016. https://doi.org/10.1007/s11356-019-05073-6

    Article  CAS  Google Scholar 

  • Rehman M, Maqbool Z, Peng D, Liu L (2019b) Morpho-physiological traits, antioxidant capacity and phytoextraction of copper by ramie (Boehmeria nivea L.) grown as fodder in copper-contaminated soil. Environ Sci Pollut Res 26:5851e5861

    Article  Google Scholar 

  • Rehman M, Saleem MH, Fahad S, Maqbool Z, Peng D, Deng G, Liu L (2021) Medium nitrogen optimized Boehmeria nivea L. growth in copper contaminated soil. Chemosphere 266:128972. https://doi.org/10.1016/j.chemosphere.2020.128972

    Article  CAS  PubMed  Google Scholar 

  • Ren YY, Wang XL, Zhang SQ, Palta JA, Chen YL (2017) Influence of spatial arrangement in maize–soybean intercropping on root growth and water use efficiency. Plant Soil 415:131–144

    Article  CAS  Google Scholar 

  • Rerkasem B, Rerkasem K, Peoples MB, Herridge DF, Bergersen FJ (1988) Measurement of N2 fixation in maize (Zea mays L.) – ricebean (Vigna umbellata [Thunb.] Ohwiand Ohashi) intercrops. Plant Soil 108:125–135

    Article  Google Scholar 

  • Sadeghzadeh N, Hajiboland R, Poschenrieder C (2022) Intercropping induces physiological and morphological plasticity in oilseed rape and barley under drought stress. Acta Agriculturae Slovenica 118:1. https://doi.org/10.14720/aas.2022.118.3.2399

    Article  CAS  Google Scholar 

  • Sağlam A, Yetişsin F, Demiralay M, Terzi R (2016) Chap. 2 - Copper stress and responses in plants. In: Ahmad P (ed) Plant Metal Interaction, Elsevier, 2016, pp 21–40. ISBN 9780128031582. https://doi.org/10.1016/B978-0-12-803158-2.00002-3

  • Sahu PK, Jayalakshmi K, Tilgam J, Gupta A, Nagaraju Y, Kumar A, Hamid S, Singh HV, Minkina T, Rajput VD, Rajawat MVS (2022) ROS generated from biotic stress: Effects on plants and alleviation by endophytic microbes. Front Plant Sci 24:1042936. https://doi.org/10.3389/fpls.2022.1042936

    Article  Google Scholar 

  • Saleem MH, Fahad S, Rehman M, Saud S, Jamal Y, Khan S, Liu L (2020) Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. PeerJ 8:e8321. https://doi.org/10.7717/peerj.8321

    Article  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187. https://doi.org/10.3389/fpls.2016.00187

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah AA et al (2020) Synergistic effect of bacillus thuringiensis iags 199 and putrescine on alleviating cadmium-induced phytotoxicity in capsicum annum. Plants 9:151

    Article  Google Scholar 

  • Shao Z, Wang X, Gao Q, Zhang H, Yu H, Wang Y, Zhang J, Nasar J, Gao Y (2020) Root contact between maize and alfalfa facilitates nitrogen transfer and uptake using techniques of foliar 15N-labeling. Agronomy 10:360

    Article  CAS  Google Scholar 

  • Sun LL, Dong X, Wang Y, Maker G, Agarwal M, Ding Z (2022) Tea-soybean intercropping improves tea quality and nutrition uptake by inducing changes of rhizosphere bacterial communities. Microorganisms 10:2149. https://doi.org/10.3390/microorganisms10112149

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, He J, Yu X, Xie Y, Lin L, Sun G, Li H, Liao M, Liang D, Xia H, Wang S, Zhang J, Liu Z, Tu L, Liu L (2017) Intercropping with solanum nigrum and solanum photeinocarpum from two ecoclimatic regions promotes growth and reduces cadmium uptake of eggplant seedlings. Pedosphere 27:638–644. https://doi.org/10.1016/S1002-0160(17)60358-8

    Article  CAS  Google Scholar 

  • Tang Y, Liao J, Yu X, Li HX, Lin L, Liao MA, Wang ZH, Xiong B, Sun GC, Wang X, Liang D, Xia H, Tu LH (2020) Effects of intercropping hyperaccumulators on growth and cadmium accumulation of water spinach (Ipomoea aquatica Forsk). Int J Environ Anal Chem 100:567–575. https://doi.org/10.1080/03067.2019.1637430

    Article  CAS  Google Scholar 

  • Tao S, Chen YJ, Xu JFL, Cao B, Li G (2003) Changes of copper speciation in maize rhizosphere soil. Environ Pollut 122:447–454. https://doi.org/10.1016/S0269-7491(02)00313-5

    Article  CAS  PubMed  Google Scholar 

  • Thayamini HS, Brintha K (2010) Review on Maize based intercropping. J Agron 9(3):135–145

    Article  Google Scholar 

  • Tie SG, Tang ZJ, Zhao YM, Li W (2014) Oxidative damage and antioxidant response caused by excess copper in leaves of maize. Afr J Biot 11:4378–4384

    Google Scholar 

  • Tilman D (2020) Benefits of intensive agricultural intercropping. Nat Plants 6:604–605. https://doi.org/10.1038/s41477-020-0677-4

    Article  PubMed  Google Scholar 

  • Trouvelot S, Héloir M-C, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M (2014) Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci 5.  https://doi.org/10.3389/fpls.2014.00592

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18. https://doi.org/10.1093/jxb/ern297

    Article  CAS  PubMed  Google Scholar 

  • Vance CP (1998) Legume symbiotic nitrogen fixation: agronomic aspects. In: Spaink HP et al (eds) The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 509–530

    Chapter  Google Scholar 

  • Vergara Cid C, Pignata ML, Rodriguez JH (2020) Effects of co-cropping on soybean growth and stress response in lead-polluted soils. Chemosphere 246:125833. https://doi.org/10.1016/j.chemosphere.2020.125833

    Article  CAS  PubMed  Google Scholar 

  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper - induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528

    Article  Google Scholar 

  • Wang XY, Gao YZ, Zhang HL, Shao ZQ, Sun BR, Gao Q (2019) Enhancement of rhizosphere citric acid and decrease of NO3–/NH4+ ratio by root interactions facilitate N fixation and transfer. Plant Soil 447:169–182. https://doi.org/10.1007/s11104-018-03918-6

    Article  CAS  Google Scholar 

  • Wang P, Grimm B (2021) Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends Plant Sci 26:484–495. https://doi.org/10.1016/j.tplants.2020.12.005

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu X, Zhang J, Ouyang Y, Wei G, Xiong Y (2020) Rice intercropping with alligator flag (Thalia dealbata): a novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil. J Hazard Mater 394:122505. https://doi.org/10.1016/j.jhazmat.2020.122505

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Wang L, Zhou J, He W, Zeng J, Jiang Y, Cheng H (2011) Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem 125:44–48

    Article  CAS  Google Scholar 

  • Xia HY, Zhao JH, Sun JH, Bao XG, Christie P, Zhang FS, Li L (2013) Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crop Res 150:52–62

    Article  Google Scholar 

  • Xie Y, Wang L, Yang L, Yan WY, He ZQ, Tang Y, Liao MA, Zhou XT (2021) Intercropping with Ecliptaprostrata and Crassocephalumcrepidioides decrease cadmium uptake of tomato seedlings. Int J Environ Anal Chem 101:1231–1239. https://doi.org/10.1080/03067319.2019.1678606

    Article  CAS  Google Scholar 

  • Xu K, Chai Q, Hu F, Xu Ke, Chai Q, Hu F, Yin W, Fan Z (2023) Postponed nitrogen fertilizer topdressing enhances nitrogen use efficiency in pea/maize intercropping. Plant Soil 487:587–603. https://doi.org/10.1007/s11104-023-05955-2

    Article  CAS  Google Scholar 

  • Yang QQ, Li ZY, Lu XN, Duan QN, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment Sci. Total Environ 642:690–700

    Article  CAS  Google Scholar 

  • Yin W, Chai Q, Zhao C, Yu A, Fan Z, Hu F, Fan H, Guo Y, Coulter JA (2020) Water utilization in intercropping: a review. Agric Water Manage 241:106335. https://doi.org/10.1016/j.agwat.2020.106335

    Article  Google Scholar 

  • Younis U, Younis U, Danish S, Malik SA, Ahmed N, Munir TM, Rasheed MK (2020) Role of cotton sticks biochar in immobilization of nickel under induced toxicity condition and growth indices of Trigonella corniculata L. Environ Sci Pollut Res 27:1752–1761

    Article  CAS  Google Scholar 

  • Zafar-ul-hye M et al (2020) Effect of cadmium-tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants 9:1356

    Article  Google Scholar 

  • Zafar-ul-Hye M, Zafar-ul-Hye M, Tahzeeb-ul-Hassan M, Wahid A, Danish S, Khan MJ, Fahad S, Brtnicky M, Hussain GS, Battaglia ML, Datta R (2021) Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants. Sci Rep 11:6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang HD, Qian X, Wen Y, Hu YG, Ren CZ, Zeng ZH, Guo LC, Wang CL (2018) Contrasting carbon and nitrogen rhizodeposition patterns of soya bean (Glycine max L.) and oat (Avena nuda L). Eur J Soil Sci 125:34–40. https://doi.org/10.1111/ejss.12556

    Article  CAS  Google Scholar 

  • Zeng P, Guo ZH, Xiao XY, Peng C, Huang B (2018) Intercropping Arundo donax with woody plants to remediate heavy metal-contaminated Soil. Huan Jing KeXue 39:5207–5216. Chinese. https://doi.org/10.13227/j.hjkx.201804136

  • Zhang M, Gao X, Chen G, Afzal MR, Wei T, Zeng H, Subbarao GV, Wei Z, Zhu Y (2023) Intercropping with BNI-sorghum benefits neighbouring maize productivity and mitigates soil nitrification and N2O emission. Agric Ecosyst Environ 352:108510

    Article  CAS  Google Scholar 

  • Zhang F, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248:305–312. https://doi.org/10.1023/A:1022352229863

    Article  CAS  Google Scholar 

  • Zhang WP, Liu GC, Sun JH, Fornara D, Zhang LZ, Zhang FF, Li L, Niels A (2017) Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. FunctEcol 31:469–479. https://doi.org/10.1111/1365-2435.12732

    Article  Google Scholar 

  • Zhao SL, Liu Q, Qi YT, Duo L (2010) Responses of root growth and protective enzymes to copper stress in turfgrass. Acta Biol Cracov Bot 52:7e11

    Google Scholar 

  • Zhu YY, Chen HR, Fan JH et al (2000) Genetic diversity and disease control in rice. Nature 406:718–722

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Song F, Lu Y, Zhuge Y, Niu Y, Lou Y, Pan H, Zhang P, Pang L (2021) Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Chemosphere 276:130223

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from ‘The National Natural Science Foundation of China’ (31960368).

Author information

Authors and Affiliations

Authors

Contributions

Peng Chen: Conceived the project, revised, and edits for the manuscript. Muzammal Rehman: Performed the experiment, analyzed the data and wrote the manuscript. Jiao Pan, Samavia Mubeen, Dengjie Luo, Caijin Wang: Revised the manuscript.

Corresponding author

Correspondence to Peng Chen.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Juan Barcelo.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, M., Pan, J., Luo, D. et al. Kenaf and soybean intercropping affects morpho-physiological attributes, antioxidant capacity and copper uptake in contaminated soil. Plant Soil (2023). https://doi.org/10.1007/s11104-023-06271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-023-06271-5

Keywords

Navigation