Skip to main content
Log in

Do phylogenetic and environmental factors drive the altitudinal variation in absorptive root traits at the species and community levels?

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Although the variation in absorptive root traits at the species level and driving factors has received a lot of attention, it is still unknown how community-level root traits vary along the environmental gradients.

Methods

In this study, absorptive fine roots of 69 woody plants from four forest vegetation on the northern slope of Taibai Mountain were collected, and four root traits (including morphological and chemical traits) were measured.

Results

At the species level, absorptive root traits, except root nitrogen concentration (RNC), did not change along altitudinal gradients. A large proportion of variation in root diameter (RD), specific root length (SRL) and root tissue density (RTD) was attributed to phylogenetic taxonomy (clade, 39.47-60.72%). Differently, community-level absorptive roots at birch forest exhibited thinner RDc and lesser RNCc but longer SRLc and greater RTDc than other altitudes, which were mainly influenced by the climatic (aridity index) and soil factors (soil available P and nitrate concentration). Moreover, unlike root economic space, community-level root traits were divided into the morphological (including RDc, SRLc and RTDc) and chemical (including RNCc) dimensions.

Conclusions

Our results indicate that the response of community-level root traits to climatic and soil factors is more significant compared to species-level root traits. Future studies should incorporate community-level root traits into global vegetation distribution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets supporting this study are available on reasonable request.

References

  • Bergmann J, Weigelt A, van der Plas F, Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, McCormack ML, Meier IC, Rillig MC, Roumet C, Semchenko M, Sweeney CJ, van Ruijven J, York LM, Mommer L (2020) The fungal collaboration gradient dominates the root economics space in plants. Sci Adv 6:eaba3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomberg S, Garland T, Ives A (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Chen WL, Zeng H, Eissenstat DM, Guo DL (2013) Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Glob Ecol Biogeogr 22:846–856

    Article  Google Scholar 

  • Comas LH, Callahan HS, Midford PE (2014) Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Ecol Evol 4:2979–2990

    Article  PubMed  PubMed Central  Google Scholar 

  • Comas LH, Eissenstat DM (2009) Patterns in root trait variation among 25 co-existing north american forest species. New Phytol 182:919–928

    Article  CAS  PubMed  Google Scholar 

  • Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ (2012) Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int J Plant Sci 173:584–595

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Da RH, Fan CY, Zhang CY, Zhao XH, Gadow KV (2023) Are absorptive root traits good predictors of ecosystem functioning? A test in a natural temperate forest. New Phytol 239:75–86

    Article  PubMed  Google Scholar 

  • de la Riva EG, Marañón T, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Villar R (2018) Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424:35–48

    Article  Google Scholar 

  • Ding JX, Kong DL, Zhang ZL, Cai Q, Yin HJ (2020) Climate and soil nutrients differentially drive multidimensional fine-root traits in ectomycorrhizal-dominated alpine coniferous forests. J Ecol 108:2544–2556

    Article  CAS  Google Scholar 

  • Duan MC, Li L, Ding GG, Ma ZQ (2022) Leading nutrient foraging strategies shaping by root system characteristics along the elevations in rubber (Hevea brasiliensis) plantations. Tree Physiol. https://doi.org/10.1093/treephys/tpac081

    Article  PubMed  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60

    Article  Google Scholar 

  • Freschet GT, Pagès L, Iversen CM, Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML (2021) A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements. New Phytol 232:973–1122

    Article  PubMed  PubMed Central  Google Scholar 

  • Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort FB, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo DL, Hobbie SE, Holdaway RJ, Kembel SW, Makita N, Onipchenko VG, Picon‐Cochard C, Reich PB, Riva EG, Smith SW, Soudzilovskaia NA, Tjoelker MG, Wardle DA, Roumet C (2017) Climate, soil and plant functional types as drivers of global fine‐root trait variation. J Ecol 105:1182–1196

    Article  Google Scholar 

  • Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018) Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytol 219:1338–1352

    Article  PubMed  Google Scholar 

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubr D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140:450–457

    Article  PubMed  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–872

    Article  PubMed  Google Scholar 

  • Kong DL, Wang JJ, Wu HF, Valverde-Barrantes OJ, Wang RL, Zeng H, Kardol P, Zhang HY, Feng YL (2019) Nonlinearity of root trait relationships and the root economics spectrum. Nat Commun 10:2203

    Article  PubMed  PubMed Central  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC, Mommer L (2016) Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104:1299–1310

    Article  Google Scholar 

  • Li FL, Hu H, McCormlack ML, Feng DF, Liu X, Bao WK (2019) Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests. J Ecol 107:1238–1249

    Article  Google Scholar 

  • Liu XR, Chen HX, Sun TY, Li DY, Wang X, Mo WY, Wang RL, Zhang SX (2021) Variation in woody leaf anatomical traits along the altitudinal gradient in Taibai Mountain, China. Global Ecol Conserv 26:e01523

    Article  Google Scholar 

  • Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature 555:94–97

    Article  CAS  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari H-S, Hobbie EA, Iversen CM, Jackson RB, Leppälammi‐Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  PubMed  Google Scholar 

  • Ostonen I, Helmisaari H, Werner B, Tedersoo L, Kukumägi M, Bahram M, Lindroos A, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011) Fine root foraging strategies in Norway spruce forests across a european climate gradient. Glob Change Biol 17:3620–3632

    Article  Google Scholar 

  • Pierick K, Link RM, Leuschner C, Homeier J (2022) Elevational trends of tree fine root traits in species-rich tropical Andean forests. Oikos. https://doi.org/10.1111/oik.08975

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine north american trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Qian H, Jin Y (2015) An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J Plant Ecol 9:233–239

    Article  Google Scholar 

  • Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Spitzer CM, Sundqvist MK, Wardle DA, Gundale MJ, Kardol P (2022) Root trait variation along a sub-arctic tundra elevational gradient. Oikos. https://doi.org/10.1111/oik.08903

    Article  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44:261–280

    Article  Google Scholar 

  • Tang Z, Fang J (2006) Temperature variation along the northern and southern slopes of Mt. Taibai, China. Agric Meteorol 139:200–207

    Article  Google Scholar 

  • Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017) A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol 215:1562–1573

    Article  PubMed  Google Scholar 

  • Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015) Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Funct Ecol 29:796–807

    Article  Google Scholar 

  • Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB (2013) The distribution of below-ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours. J Ecol 101:933–942

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Wang RL, Chen HX, Liu XR, Wang ZB, Wen JW, Zhang SX (2020) Plant phylogeny and growth form as drivers of the altitudinal variation in woody leaf vein traits. Front Plant Sci 10:1735

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HF, Wang ZQ, Dong XY (2019) Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China. PLoS ONE 14:e0215126

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang RL, Wang QF, Zhao N, Xu ZW, Zhu XJ, Jiao CC, Yu GR, He NP, Niu SL (2018) Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits. Funct Ecol 32:29–39

    Article  Google Scholar 

  • Wang RL, Yu GR, He NP (2021) Root community traits: scaling-up and incorporating roots into ecosystem functional analyses. Front Plant Sci 12:690235

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M, Osaki1 M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  CAS  PubMed  Google Scholar 

  • Weemstra M, Freschet GT, Stokes A, Roumet C, Sayer E (2021) Patterns in intraspecific variation in root traits are species-specific along an elevation gradient. Funct Ecol 35:342–356

    Article  Google Scholar 

  • Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramíez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, Roumet C, van Ruijven J, Sabatini FM, Semchenko M, Sweeney CJ, Valverde-Barrantes OJ, York LM, McCormack ML (2021) An integrated framework of plant form and function: the belowground perspective. New Phytol 232:42–59

    Article  PubMed  Google Scholar 

  • Yan H, Freschet GT, Wang HM, Hogan JA, Li SG, Valverde-Barrantes OJ, Fu XL, Wang RL, Dai XQ, Jiang L, Meng SW, Yang FT, Zhang MM, Kou L (2022) Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. New Phytol 234:1639–1653

    Article  CAS  PubMed  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, Beaulieu JM, Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32271611), Youth Talent Support Project of Science and Technology Association in Shaanxi Province (20200203) and 245 Qinling National Forest Ecosystem Research Station in 2022 financed by Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Contributions

Study design: SXZ and RLW; Collecting sampling: XW, XRL, HXC, HRG, MZ, YQY; Data collection and analyze: XW, XRL, KXC; Manuscript writing: XW, RLW and SXZ.

Corresponding authors

Correspondence to Ruili Wang or Shuoxin Zhang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Peter J. Gregory.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 642 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, X., Mo, W. et al. Do phylogenetic and environmental factors drive the altitudinal variation in absorptive root traits at the species and community levels?. Plant Soil 494, 203–215 (2024). https://doi.org/10.1007/s11104-023-06267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06267-1

Keywords

Navigation