Skip to main content
Log in

Interaction of nitrogen availability in the soil with leaf physiological traits and nodule formation of Robinia pseudoacacia-rhizobia symbiosis depends on provenance

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The interaction between nitrogen (N) availability in the soil, rhizobia nodule formation and leaf physiological traits of Robinia pseudoacacia L. was explored at initial nodule development.

Methods

We selected two Robinia provenances, one from Northwest (GS) and one from Northeast China (DB), and cultivated seedlings in the greenhouse with and without rhizobia inoculation at normal and high N supply in the soil. After ca. 2.5 months growth, nodule formation, plant biomass, CO2 and H2O gas exchange of the leaves, and foliar N contents and partitioning were analyzed.

Results

Rhizobia inoculation strongly promoted the formation of root nodules independent of N availability in the soil, but this effect was more pronounced in the DB than for GS provenance. It reduced biomass accumulation of the GS provenance, but not for DB provenance at both, normal and high soil N availability. High N supply did not affect biomass accumulation independent of rhizobia inoculation. Leaf photosynthesis of both Robinia origins was enhanced by high N supply, but this effect was counteracted by rhizobia inoculation only in leaves of DB plants. In GS but not in DB plants, high N supply reduced not only nodule formation, but also stomatal conductance, but still enhanced transpiration without modifying the foliar water content. In addition, high N supply plus inoculation enhanced the organic N content in GS plants rather than DB plants.

Conclusion

These results indicate that excess N availability in the soil interacts with the performance of Robinia provenances, as previously reported for drought and phosphorus (P) depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Allito BB, Ewusi-Mensah N, Logah V et al (2021) Legume-rhizobium specificity effect on nodulation, biomass production and partitioning of faba bean (Vicia faba L.). Sci Rep 11:3678. https://doi.org/10.1038/s41598-021-83235-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuchi F, Kinose Y, Matsumura T, Kanomata T, Uehara Y, Kobayashi A, Yamaguchi M, Izuta T (2014) Modeling stomatal conductance and ozone uptake of Fagus crenata grown under different nitrogen loads. Environ Pollut 184:481–487

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Wu J, Clark CM et al (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Bailey-Serres J, Parker JE, Ainsworth EA et al (2019) Genetic strategies for improving crop yields. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batterman SA, Hedin LO, Michiel VB, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224–227

    Article  CAS  PubMed  Google Scholar 

  • Batzli J, Graves WR, Van Berkum P (1992) Diversity among rhizobia effective with Robinia pseudoacacia L. Appl Environ Microbiol 58:2137–2143

    Article  Google Scholar 

  • Bi Y, Zou H, Zhu C (2014) Dynamic monitoring of soil bulk density and infiltration rate during coal mining in sandy land with different vegetation. Int J Coal Sci Technol 1:198–206

    Article  Google Scholar 

  • Bissonnette C, Fahlman B, Peru KM, Khasa DP, Greer CW, Headley JV, Roy S (2014) Symbiosis with Frankia sp. benefits the establishment of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa in tailings sand from the Canadian oil sands industry. Ecol Eng 68:167–175

    Article  Google Scholar 

  • Bote AD, Zana Z, Ocho FL, Vos J (2018) Analysis of coffee (Coffea arabica L.) performance in relation to radiation level and rate of nitrogen supply II. Uptake and distribution of nitrogen, leaf photosynthesis and first bean yields. Eur J Agron 92:107–114

    Article  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Chen Y (2017) Coupling of plant and soil C:N:P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau, China. Trees 31:1559–1570

    Article  CAS  Google Scholar 

  • Cechin I, Fumis TD (2004) Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci 166:1379–1385

    Article  CAS  Google Scholar 

  • Craine J (2009) Resource strategies of wild plants. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuervo-Alarcon L, Arend M, Muller M, Sperisen C, Finkeldey R, Krutovsky KV (2018) Genetic variation and signatures of natural selection in populations of European beech (Fagus sylvatica L.) along precipitation gradients. Tree Genet Genom 14:84. https://doi.org/10.1007/s11295-018-1297-2

    Article  Google Scholar 

  • Dang YA, Li SQ, Wang GD, Shao MA (2007) Distribution characteristics of soil total nitrogen and soil microbial biomass nitrogen for the typical types of soils on the Loess Plateau. Plant Nutr Fertil Sci 13:1020–1027

    CAS  Google Scholar 

  • Du B, Pang J, Hu B, Allen DE, Bell TL, Pfautsch S, Netzer F, Dannenmann M, Zhang S, Rennenberg H (2019) N2-fixing black locust intercropping improves ecosystem nutrition at the vulnerable semi-arid Loess Plateau region, China. Sci Total Environ 688:333–345

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Xie Y, Liu G, Gao X, Lu H (2010) Field capacity in black soil region, Northeast China. Chin Geogr Sci 20:406–413

    Article  Google Scholar 

  • Fang YJ, Xiong LZ (2014) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  PubMed  Google Scholar 

  • Ferguson BJ, Mens C, Hastwell AH et al (2018) Legume nodulation: the host controls the party. Plant Cell Environ 42:1–11

    Google Scholar 

  • Finér L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Børja I et al (2007) Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405

    Article  Google Scholar 

  • Flemetakis E, Efrose RC, Ott T, Stedel C, Aivalakis G, Udvardi MK, Katinakis P (2006) Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase. Plant Mol Biol 62:53–69

    Article  CAS  PubMed  Google Scholar 

  • Fowells HA (1965) Silvics of the forest trees of the United States. Agriculture Handbook No. 271. Washington DC, USA: USDA, Forest Service

  • Franzini VI, Azcón R, Méndes FL, Aroca R (2013) Different interaction among Glomus and Rhizobium species on phaseolus vulgaris and z ea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Regul 70:265–273

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman GW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gandour M, Khouja ML, Toumi L et al (2007) Morphological evaluation of cork oak (Quercus suber), Mediterranean provenance variability in Tunisia. Ann For Sci 64:549–555

    Article  Google Scholar 

  • Gao S, Cai Z, Yang C, Luo J, Zhang S (2021) Provenance-specific ecophysiological responses to drought in Cunninghamia lanceolata. J Plant Ecol 14:1060–1072

    Article  Google Scholar 

  • Ge T (2020) The Research on Soil Repair Effect Under Different Vegetation Types in Fushun West Open-pit. Diploma thesis

  • Gicharu G, Gitonga N, Boga H, Cheruiyot R, Maingi J (2013) Effect of inoculating selected climbing bean cultivars with different rhizobia strains on nitrogen fixation. Int J Microbiol Res 1:25–31

    Google Scholar 

  • Göttlein A (2015) Ranges of threshold values for the nutritional assessment of the main tree species spruce, pine, oak and beech. Allgemeine Forst- und Jagdzeitung 186:110–116

    Google Scholar 

  • Guiboileau A, Avila-Ospina L, Yoshimoto K, Soulay F, Azzopardi M, Marmagne A, Lothier J, Masclaux-Daubresse C (2013) Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol 199:683–694

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Yu N, Jianguo H (2010) Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop Grasslands 44:109–114

    Google Scholar 

  • Heju H (2005) Spring nursery soil disinfection. Northern Horticulture 45:21–34

  • Hertel D, Strecker T, Müller-Haubold H, Leuschner C (2013) Fine root biomass and dynamics in beech forests across a precipitation gradient - is optimal resource partitioning theory applicable to water-limited mature trees? J Ecol 101:1183–1200

    Article  Google Scholar 

  • Hu B, Simon J, Kuster TM, Arend M, Siegwolf R, Rennenberg H (2013) Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type. Plant Biol 15:198–209

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Zhou M, Dannenmann M, Saiz G, Simon J, Bilela S, Liu XG, Hou L, Chen H, Zhang D, Butterbach-Bahl K, Rennenberg H (2017) Comparison of nitrogen nutrition and soil carbon status of afforested stands established in degraded soil of the Loess Plateau, China. For Ecol Manag 389:46–58

    Article  Google Scholar 

  • Jin X, Shi C, Yu CY, Yamada T, Sacks EJ (2017) Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in miscanthus. Front Plant Sci 8:721. https://doi.org/10.3389/fpls.2017.00721

  • Jung-Tai L, Sung-Ming T (2018) The nitrogen-fixing Frankia significantly increases growth, uprooting resistance and root tensile strength of Alnus formosana. Afr J Biotechnol 17:213–225

    Article  Google Scholar 

  • Kalloniati C, Krompas P, Karalias G, Udvardi MK, Rennenberg H, Herschbach C, Flemetakis E (2015) Nitrogen-fixing nodules are an important source of reduced sulfur, which triggers global changes in sulfur metabolism in lotus japonicus. Plant Cell 27:2384–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 54:707–714

    Article  Google Scholar 

  • Kohl DH, Reynolds SPH, Shearer G (1989) Distibution of 15N within pea, lupin and soybean nodules. Plant Physiol 90:420–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Cao J, Tang R, Zhang S, Dong F (2014) Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River irrigation region, Northwest China. Environ Monit Assess 186:7719–7731

    Article  CAS  PubMed  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruse J, Turnbull T, Rennenberg H, Adams MA (2020) Plasticity of leaf respiratory and photosynthetic traits in eucalyptus grandis and e. regnans grown under variable light and nitrogen availability. Frontiers in Forests and Global Change 3. https://doi.org/10.3389/ffgc.2020.00005

  • Laliberté E, Turner B, Costes T et al (2012) Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the South-Western Australia biodiversity hotspot. J Ecol 100:631–642

    Article  Google Scholar 

  • Lambers H, Atkin OK, Millenaar FF (2002) Respiratory patterns in roots in relation to their functioning. In: Waisel Y, Eshel A, Kafkaki U (eds) Plant roots: the hidden half. Marcel Dekker, Inc., New York, NY, pp 521–552

    Chapter  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Li J, Zhang S, Shi S, Du J, Huo P (2020) Effect of phosphate solubilizing rhizobium strains on alfalfa seedlings growth under nitrogen free and phosphorus deficient conditions. J Biobased Mater Bioenergy 14:133–137

    Article  CAS  Google Scholar 

  • Lin Y, Feng Z, Wu W, Yang Y, Zhou Y, Xu C (2017) Potential impacts of climate change and adaptation on maize in Northeast China. Agron J 109:1476–1490

    Article  Google Scholar 

  • Liu X, Fan Y, Long J, Wei R, Kjelgren R, Gong C, Zhao J (2013) Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings. J Environ Sci 25:585–595. https://doi.org/10.1016/s1001-0742(12)60081-3

    Article  Google Scholar 

  • Liu Z, Chen W, Jiao S, Wang X, Fan M, Wang E, Wei G (2019) New insight into the evolution of symbiotic genes in black locust-associated rhizobia. Genome Biol Evol 11:1736–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Hu B, Bell TL, Flemetakis E, Rennenberg H (2020) Significance of mycorrhizal associations for the performance of N2-fixing black locust (Robinia pseudoacacia L.). Soil Biol Biochem 145:107776

    Article  CAS  Google Scholar 

  • Lorite MJ, Estrella MJ, Escaray FJ, Sannazzaro A, de Castro IMV, Monza J, Sanjuan J, Leon-Barrios M (2018) The rhizobia-lotus symbioses: deeply specific and widely diverse. Front Microbiol 9:2055

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo J, Zhou J, Li H, Shi W, Polle A, Lu M, Sun X, Luo Z (2015a) Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol 35:1283–1302

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Zhou J, Li H, Shi W, Polle A, Lu M, Sun X, Luo Z (2015b) Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol 35:1283–1302

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Zhang B, Liu J, Wang X, Han F, Zhou J (2020) Effects of different ages of Robinia pseudoacacia plantations on soil physiochemical properties and microbial communities. Sustainability 12:9161–9179

    Article  CAS  Google Scholar 

  • Mantovani D, Veste M, Boldt-Burisch K, Fritsch S, Koning LA, Freese D (2015) Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation. Ann For Res 58:259–274

    Article  Google Scholar 

  • Mariangela NF, Daniela T, Anna K, Georgios A, Panagiotis K, Michael KU, Rennenberg H, Emmanouil F (2011) Nodulation enhances dark CO2 fixation and recycling in the model legume Lotus japonicus. J Exp Bot 62:2959–2971

    Article  Google Scholar 

  • Matamaoros MA, Moran JF, Iturbe-ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol (Bethesda) 121:879–888

    Article  Google Scholar 

  • McKenzie R, Middleton A, Solberg E, DeMulder J, Flore N, Clayton G, Bremer E (2001) Response of pea to rhizobia inoculation and starter nitrogen in Alberta. Can J Plant Sci 81:637–643. https://doi.org/10.4141/P01-006

    Article  Google Scholar 

  • Meller S, Frossard E, Spohn M, Luster J (2020) Plant nutritional status explains the modifying effect of provenance on the response of beech sapling root traits to differences in soil nutrient supply. Front For Glob Change 3:535117. https://doi.org/10.3389/ffgc.2020.535117

    Article  Google Scholar 

  • Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res 131:1461–1472

    Article  Google Scholar 

  • Mierzwa B, Wdowiak-Wrobel S, Kalita M, Gnat S, Malek W (2010) Insight into the evolutionary history of symbiotic genes of Robinia pseudoacacia rhizobia deriving from Poland and Japan. Arch Microbiol 192:341–350

    Article  CAS  PubMed  Google Scholar 

  • Millard P, Grelet GA (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Fan XR, Orsel M et al (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    Article  CAS  PubMed  Google Scholar 

  • Minotta G, Pinzauti S (1996) Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. For Ecol Manag 86:61–71

    Article  Google Scholar 

  • Moshki A, Lamersdorf NP (2011) Symbiotic nitrogen fixation in black locust (Robinia pseudoacacia L.) seedlings from four seed sources. J For Res (Harbin) 22:689–692

    Article  CAS  Google Scholar 

  • Mothapo NV, Grossman JM, Sooksa-nguan T, Maul J, Bräuer SL, Shi W (2013) Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth.) genotypes with resident soil rhizobia. Biol Fertil Soils 49(7):871–879. https://doi.org/10.1007/s00374-013-0781-y

    Article  Google Scholar 

  • Ni J, Su S, Li H, Geng Y, Zhou H, Feng Y, Xu X (2020a) Distinct physiological and transcriptional responses of leaves of paper mulberry (Broussonetia kazinoki x B. papyrifera) under different nitrogen supply levels. Tree Physiol 40:667–682

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Su S, Li H, Geng Y, Zhou H, Feng Y, Xu X (2020b) Distinct physiological and transcriptional responses of leaves of paper mulberry (Broussonetia kazinoki × B. papyrifera) under different nitrogen supply levels. Tree Physiol 40:667–682

    Article  CAS  PubMed  Google Scholar 

  • Oberson A, Frossard E, Bühlmann C, Mayer J, Mäder P, Lüscher A (2013) Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant Soil 371:237–255

    Article  CAS  Google Scholar 

  • Ohyama T, Kumazawa K (1980) Nitrogen assimilation in soybena nodules. II 15N2 assimilation in bacteriods and cytosol fractions of soybean nodules. Soil Sci Plant Nutr 26:205–213

    Article  CAS  Google Scholar 

  • Olesniewicz SK, Thomas BR (1999) Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide. New Phytol 142:133–140

    Article  Google Scholar 

  • Parker MA, Wurtz AK, Paynter Q (2007) Nodule symbiosis of invasive Mimosa pigra in Australia and in ancestral habitats: a comparative analysis. Biol Invasions 9:127–138

    Article  Google Scholar 

  • Pereyra G, Hartmann H, Michalzik B, Ziegler W, Trumbore S (2015) Influence of rhizobia inoculation on biomass gain and tissue nitrogen content of leucaena leucocephala seedlings under drought. Forests 6:3686–3703

    Article  Google Scholar 

  • Pitcairn CER, Fowler D, Grace J (1995) Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environ Pollut 88:193–205

    Article  CAS  PubMed  Google Scholar 

  • Quinkenstein A, Pape DA, Freese D, Schneider BU, Hüttl RF (2012) Biomass, carbon and nitrogen distribution in living woody plant parts of Robinia pseudoacacia L. Growing on reclamation sites in the mining region of Lower Lusatia (Northeast Germany). Int J For Res 2012:1–10

  • Ramírez-Valiente JA, Valladares F, Sánchez-Gómez D et al (2014) Population variation and natural selection on leaf traits in cork oak throughout its distribution range. Acta Oecologia 58:49–56

    Article  Google Scholar 

  • Raven JA, Andrews M (2010) Evolution of tree nutrition. Tree Physiol 30:1050–1071

    Article  PubMed  Google Scholar 

  • Ren ZG, Lin CL, Li Y, Song CS, Wang XZ, Piao CG, Tian GZ (2014a) Comparative molecular analyses of phytoplasmas infecting Sophora japonica cv. golden and Robinia pseudoacacia. J Phytopathol 162:98–106

    Article  CAS  Google Scholar 

  • Ren ZG, Lin CL, Li Y, Song CS, Wang XZ, Piao CG, Tian GZ (2014b) Comparative molecular analyses of phytoplasmas infecting Sophora japonica cv. golden and Robinia pseudoacacia. J Phytopathol 162:98–106

    Article  CAS  Google Scholar 

  • Rennenberg H, Dannenmann M (2015) Nitrogen nutrition of trees in temperate forests—the significance of nitrogen availability in the pedosphere and atmosphere. Forests 6:2820–2835

    Article  Google Scholar 

  • Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biol (Stuttg) 12:275–291

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Mostofa MG, Ahmad MZ, Zhou Y, Adeel M, Mehmood S, Ahmad MA, Javed R, Imtiaz M, Aziz O, Ikram M, Tu S, Liu Y (2019) Hydrogen sulfide enhances rice tolerance to nickel through the prevention of chloroplast damage and the improvement of nitrogen metabolism under excessive nickel. Plant Physiol Biochem 138:100–111

    Article  CAS  PubMed  Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma. Curr Sci 92:317–322

    CAS  Google Scholar 

  • Saito A, Tanabata S, Tanabata T et al (2014) Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.). Int J Mol Sci 15:4464–4480

    Article  PubMed  PubMed Central  Google Scholar 

  • Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Savidov NA, Lips SH (1997) Regulation ofMo-cofactor, NAHD- and NAD(P)H-specific nitrate reductase activities in the wild type and two nar- mutant lines ofbarley (Hordeum vul-gare L.). J Exp Bot 48:847–855

    Article  CAS  Google Scholar 

  • Sharaya LS, Novik SN, Pariiskaya AN, Kalakutskii LV (1987) Specific deformation of Alder root hairs upon interaction with infectious Frankia culture. Microbiology 56:110–114

    Google Scholar 

  • Shi H, Ye T, Song B et al (2015) Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance. Physiol Plant 37:122

    Google Scholar 

  • Simon J, Dannenmann M, Pena R, Gessler A, Rennenberg H (2017) Nitrogen nutrition of beech forests in a changing climate: importance of plant-soil-microbe water, carbon, and nitrogen interactions. Plant Soil 418:89–114

    Article  CAS  Google Scholar 

  • Song J, Wang Y, Pan Y, Pang J, Zhang X, Fan J, Zhang Y (2019) The influence of nitrogen availability on anatomical and physiological responses of Populus alba x P. glandulosa to drought stress. BMC Plant Biol 19:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprent JI (2008) 60Ma of legume nodulation. What's new? What's changing? Comp Biochem Physiol Part A Mol Integr Physiol 59:S215–S216

    Google Scholar 

  • Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 215:40–56

    Article  CAS  PubMed  Google Scholar 

  • Streeter J, Wong PP (1998) Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7:1–23

    Article  Google Scholar 

  • Talaat NB, Abdallah AM (2008) Response of faba bean (Vicia faba L.) to dual inoculation with Rhizobium and VA mycorrhiza under different levels of N and P fertilization. J Appl Sci Res 4:1092–1102

  • Tardieu F, Simonneau T, Muller B (2018) The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu Rev Plant Biol 69:733–759. https://doi.org/10.1146/annurev-arplant-042817-040218

  • Ulrich A, Zaspel I (2000) Phylogenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L. Microbiology 146:2997–3005

    Article  CAS  PubMed  Google Scholar 

  • Ulzen J (2018) Optimizing legume-rhizobia symbiosis to enhance legume grain yield in smallholder farming system in Ghana. A thesis submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University Science and Technology, Kumasi, in partial fulfillment of the requirements of the degree of doctor of philosophy in soil science

  • Vallano MD, Sparks PJ (2013) Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient. Oecologia 1:47–58

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Tilman DG (1997) Human alteration of the global nigrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Voisin A-S, Salon C, Munier-Jolain NG, Ney B (2002) Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation of pea (Pisum sativum L.). Plant Soil 243:31–42

    Article  CAS  Google Scholar 

  • Wang G, Liu F (2014) Carbon allocation of Chinese pine seedlings along a nitrogen addition gradient. For Ecol Manag 334:114–121

    Article  Google Scholar 

  • Wang X, Li X, Zhang S, Korpelainen H, Li C (2016) Physiological and transcriptional responses of two contrasting Populus clones to nitrogen stress. Tree Physiol 36:628–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Guo X, Yu Y, Cui H, Wang R, Guo W (2018) Increased nitrogen supply promoted the growth of non-N-fixing woody legume species but not the growth of N-fixing Robinia pseudoacacia. Sci Rep 8:17896. https://doi.org/10.1038/s41598-018-35972-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Guo X, Du N, Guo W, Pang J (2021) Rapid nitrogen fixation contributes to a similar growth and photosynthetic rate of Robinia pseudoacacia supplied with different levels of nitrogen. Tree Physiol 41:177–189

    Article  CAS  PubMed  Google Scholar 

  • Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ et al (2017a) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169

    Article  Google Scholar 

  • Weemstra M, Sterck FJ, Visser EJW, Kuyper TW, Goudzwaard L, Mommer L (2017b) Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils. Plant Soil 415:175–188. https://doi.org/10.1007/s11104-016-3148-y

    Article  CAS  Google Scholar 

  • Wei G, Chen W, Zhu W, Chen C, Young JPW, Bontemps C (2009) Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol Ecol 68:320–328

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Turner SJ, Silvester WB, Park DC, Young JM (2004) Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol 70:5980–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Zavišić A, Pena R, Polle A (2016) Phenology, photosynthesis, and phosphorus in European beech (Fagus sylvatica L.) in two forest soils with contrasting P contents. J Plant Nutr Soil Sci 179:151–158. https://doi.org/10.1002/jpln.201500539

    Article  CAS  Google Scholar 

  • Yuan H, Hu B, Zhsh L, Sun HG, Zhou M, Rennenberg H (2022) Physiological responses of black locust-rhizobia symbiosis to water stress. Physiol Plantarium 174:e13641. https://doi.org/10.1111/ppl.13641

    Article  CAS  Google Scholar 

  • Zavišić A, Yang N, Marhan S, Kandeler E, Polle A (2018) Forest soil phosphorus resources and fertilization affect ectomycorrhizal community composition, beech P uptake, and photosynthesis. Front Plant Sci 9:463. https://doi.org/10.3389/fpls.2018.00463

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Jiang H, Zhao H, Korpelainen H, Li C (2014) Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies. Tree Physiol 34:343–354

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2016) Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Glob Chang Biol 22:1445–1455

    Article  PubMed  Google Scholar 

  • Zhang P, Dumroese RK, Pinto JR (2019a) Organic or inorganic nitrogen and rhizobia inoculation provide synergistic growth response of a leguminous forb and tree. Front Plant Sci 10:1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Dumroese RK, Pinto JR (2019b) Organic or inorganic nitrogen and rhizobia inoculation provide synergistic growth response of a leguminous forb and tree. Front Plant Sci 10:1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu Y, Shi C, Zhao Y, Xiao J, Wang X (2021a) Soil carbon, nitrogen, phosphorus content and their ecological stoichiometric characteristics in different plantation ages. Ecol Environ Sci 30:485–491

    Google Scholar 

  • Zhang M, Nazieh S, Nkrumah T, Wang X (2021b) Simulating grassland carbon dynamics in Gansu for the past fifty (50) years (1968–2018) using the century model. Sustainability 13(16):9434. https://doi.org/10.3390/su13169434

  • Zhou M, Zhsh L, Yuan H, Sun HG, Hu B, Rennenberg H (2022) Physiological sensitivity of Robinia pseudoacacia L.-rhizobia association to low phosphorus availability. Environ Exp Bot 199:104893

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend them thanks to the graduate-fellow team of Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University for their excellent assistance in the greenhouse planting and sampling work. The financial supports of the “Double-First Class” Initiative Program for Foreign Talents of Southwest University and the “Prominent Scientist Program” of Chongqing Talents (cstc2021ycjh-bgzxm0002 & cstc2021ycjh-bgzxm0020), China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hongguang Sun, Rui Liu, Zhenshan Liu, Mi Zhou and Hui Yuan. The first draft of the manuscript was written by Hongguang Sun and Bin Hu. Heinz Rennenberg and Bin Hu contributed to the finalization and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bin Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Responsible Editor: Katharina Pawlowski.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 112 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Liu, R., Yuan, H. et al. Interaction of nitrogen availability in the soil with leaf physiological traits and nodule formation of Robinia pseudoacacia-rhizobia symbiosis depends on provenance. Plant Soil 490, 239–259 (2023). https://doi.org/10.1007/s11104-023-06069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06069-5

Keywords

Navigation