Skip to main content

Advertisement

Log in

Zinc fertilizers for Citrus production: assessing nutrient supply via fertigation or foliar application

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Zinc (Zn) deficiency is widespread in citrus orchard around the world, which impairs plant growth and fruit yield. Zn fertilization is usually recommended in field orchards, and application strategies toward nutrient use efficiency are key for successful crop management.

Methods

Field studies were carried out with sweet orange trees for four growing seasons, testing Zn (nitrate, sulfate or EDTA) applied either via fertigation or foliar spray compared to a control without Zn.

Results

The Zn concentrations in the soil increased with nutrient supply by both application methods. Zn-EDTA via fertigation increased soil nutrient availability compared to the control. Likewise, Zn-nitrate via foliar application also increased soil Zn levels. Regarding the plant, Zn-EDTA via fertigation increased leaf nutrient levels only after the third year of fertilization, whereas Zn-nitrate via foliar spray increased leaf levels in the short term, up to 120 mg kg−1. To a lesser extent, Zn-EDTA or sulfate also increased leaf Zn compared to the control. Accumulated fruit yield was ~20% higher in trees with Zn-EDTA via fertigation and ~ 20% higher in trees with Zn-nitrate or sulfate via foliar application compared to the control, with these latter exerting greater responses. Trees supplied with Zn exhibited lower H2O2 and higher CAT activity compared to the control, which correlated with a fruit yield increase.

Conclusion

In conclusion, Zn-EDTA via fertigation or nitrate or sulfate via foliar application improved the horticultural performance of trees, supporting the establishment of best nutrient management practices in fruit production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu CA, Abreu MF, Andrade JC, van Raij B (1998) Restrictions in the use of correlation coefficients in comparing methods for the determination of the micronutrients in soils. Comm Soil Sci Plant Anal 29:1961–1972

    Article  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli E, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and trees markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  PubMed  CAS  Google Scholar 

  • Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207

    Article  CAS  Google Scholar 

  • Aravind P, Narasimha M, Prasad V (2004) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43(2):107–116

    Article  Google Scholar 

  • Arias M, Pérez-Novo C, Osorio F, López E, Soto B (2005) Adsorption and desorption of copper and zinc in the surface layer of acid soils. J Colloid Interface Sci 288(1):21–29

    Article  ADS  PubMed  CAS  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes too transfer from elevated carbon dioxide to air ozone fumigation, in leaves and roots of wild-type and catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Bataglia OC, Furlani AMC, Teixeira JPF, Furlani PR, Gallo JR (1983) Métodos de Análise Química de Plantas. IAC, Campinas, p 48 (Boletim Técnico 78)

    Google Scholar 

  • Bautista-Diaz J, Cruz-Alvarez O, Hernández-Rodríguez OA, Sánchez-Chávez E, Jacobo-Cuellar JL, Preciado-Rangel P, Avila-Quezada GD, Ojeda-Barrios DL (2021) Zinc sulphate or zinc nanoparticle applications to leaves of green beans. Folia Horticulturae 33(2):365–375

    Article  Google Scholar 

  • Bell RW, Dell B (2008) Types of micronutrient fertilizer products: advantages and disadvantages of the different types. In: Micronutrient for sustainable food, feed, fibre and bioenergy production. International Fertilizer Industry Association, Paris, pp 53–66

    Google Scholar 

  • Boaretto AE, Boaretto RM, Muraoka T, Mourão Filho FAA (2002) Foliar micronutrient application effects on citrus fruit yield, soil and leaf concentrations and 65Zn mobilization within the plant. Acta Hort 594:203–209

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    Article  ADS  PubMed  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytologist 173(4):677–702

  • Cadahía C, Lucena JJ (2005) Diagnostico de nutrición y recomendaciones de abonado. In: Cadahía C (ed) Fertirrigación: Cultivos hortícolas, frutales y ornamentales. Ediciones Mundi-Prensa, Madrid, pp 183–257

    Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  PubMed  CAS  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2016) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  PubMed  Google Scholar 

  • Doolette CL, Read TL, Li C, Scheckel KG, Donner E, Kopittke PM, Schjoerring JK, Lombi E (2018) Foliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciation. J Exp Bot 69(18):4469–4481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fares A, Bayabil HK, Zekri M, Mattos D Jr, Awal R (2017) Potential climate change impacts on citrus water requirement across major producing areas in the world. J Water Climate Change 8(4):576–592

    Article  Google Scholar 

  • Fernández V, Sotiropoulos T, Brown PH (2013) Foliar fertilisation: principles and practices. International Fertilizer Industry Association (IFA), Paris

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  PubMed  CAS  Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers: an introduction to nutrient management, 7th edn. Pearson Education, Upper Saddle River

    Google Scholar 

  • Hippler FWR, Reis IMS, Boaretto RM, Quaggio JA, Mattos D Jr (2014) Características adsortivas de solos e o suprimento de zinco e manganês para os citros. Citrus Res Technol 35:73–83

    Article  Google Scholar 

  • Hippler FWR, Boaretto RM, Quaggio JA, Boaretto AE, Abreu CH Jr, Mattos D Jr (2015) Uptake and distribution of soil applied zinc by Citrus trees - addressing fertilizer use efficiency with 68Zn labeling. PLoS One 10(3):e0116903

    Article  PubMed  PubMed Central  Google Scholar 

  • Hippler FWR, Cipriano DO, Boaretto RM, Quaggio JÁ, Gaziola AS, Azevedo RA, Mattos-Jr D (2016) Citrus rootstocks regulate the nutritional status and antioxidant system of trees under copper stress. Environ Exp Bot 130:42–52

    Article  CAS  Google Scholar 

  • Hippler FWR, Boaretto RM, Teixeira LAJ, Quaggio JA, Mattos D Jr (2018a) Copper supply and fruit yield of young Citrus trees: fertiliser sources and application methods. Bragantia 77:365–371

    Article  CAS  Google Scholar 

  • Hippler FWR, Petená G, Boaretto RM, Quaggio JA, Azevedo RA, Mattos D Jr (2018b) Mechanism of cu-stress alleviation in Citrus trees after metal uptaken by leaves or roots. Environ Sci Poll Res 25(13):13134–13146

    Article  CAS  Google Scholar 

  • Johnston AM, Bruulsema TW (2014) 4R nutrient stewardship for improved nutrient use efficiency. Proc Eng 83:365–370

    Article  Google Scholar 

  • Kraus et al (1995) Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. J Plant Physiol 145(4):570–576

    Article  ADS  CAS  Google Scholar 

  • Ma D, Sun D, Wang C, Ding H, Qin H, Hou J, Huang X, Xie Y, Guo T (2017) Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Front Plant Sci 8:860. https://doi.org/10.3389/fpls.2017.00860

    Article  PubMed  PubMed Central  Google Scholar 

  • Macedo LO, Mattos D Jr, Jacobassi RC, Petená G, Quaggio JA, Boaretto RM (2021) Characterization and use efficiency of sparingly soluble fertilizer of boron and zinc for foliar application in coffee plants. Bragantia 80:e3421

    Article  CAS  Google Scholar 

  • Mattos D Jr, Hippler FWR, Boaretto RM, Stuchi ES, Quaggio JA (2017) Soil boron fertilization: the role of nutrient sources and rootstocks in citrus production. J Integr Agric 16:1609–1616

    Article  CAS  Google Scholar 

  • Mattos D Jr, Kadyampakeni DM, Oliver AQ, Boaretto RM, Morgan KT, Quaggio JA (2020) Soil and nutrition interactions. In: Talon M, Caruso M, Gmitter F Jr (eds) The genus Citrus, 1rd edn. Elsevier, Amsterdam, pp 311–331

    Chapter  Google Scholar 

  • McBeath TM, McLaughlin MJ (2014) Efficacy of zinc oxides as fertilisers. Plant Soil 374(1-2):843–855

    Article  CAS  Google Scholar 

  • Mengist MF, Milbourne D, Griffin D, McLaughlin MJ, Creedon J, Jones PW, Alves S (2021) Zinc uptake and partitioning in two potato cultivars: implications for biofortification. Plant Soil 463:601–613

    Article  CAS  Google Scholar 

  • Montalvo D, Degryse F, Silva RC, Baird R, McLaughlin MJ (2016) Agronomic effectiveness of zinc sources as micronutrient fertilizer. Adv Agron 139:215-267

  • Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260

    Article  PubMed  CAS  Google Scholar 

  • Obreza TA, Zekri M, Hanlon EA (2008) Soil and leaf tissue testing. In: Obreza TA, Morgan KT nutrition of Florida Citrus trees, 2nd edn. University of Florida IFAS Extension, Gainesville, pp 24–32

    Google Scholar 

  • Pérez-Clemente RM, Montoliu A, Vives V, López-Climent MF, Gómez-Cadenas A (2015) Photosynthetic and antioxidante responses of Mexican lime (Citrus aurantifolia). Plant Pathol 64:16–24

    Article  Google Scholar 

  • Peryea FJ (2006) Phytoavailability of zinc in postbloom zinc sprays applied to ‘Golden delicious’ apple trees. Horttechnology 16:60–65

    Article  CAS  Google Scholar 

  • Qin W, Assinck FBT, Heinen M, Oenema O (2016) Water and nitrogen use efficiencies in citrus production: a meta-analysis. Agric Ecosyst Environ 222:103–111

    Article  CAS  Google Scholar 

  • Quaggio JA, Mattos D Jr, Cantarella H, Tank A Jr (2003) Fertilização com boro e zinco no solo em complementação à aplicação via foliar em laranjeira Pêra. Pesq Agrop Bras 38:627–634

    Article  Google Scholar 

  • Quaggio JA, Mattos D Jr, Boaretto RM (2011) Citros. In: Prochnow LI, Casarin V, Stipp SR Boas práticas para uso eficiente de fertilizantes: Culturas. IPNI, Piracicaba, pp 373–412

    Google Scholar 

  • Quaggio JA, Mattos D Jr, Boaretto RM, Zambrosi FCB, Cantarella H (2022) Citros. In: Cantarella H, Quaggio JA, Mattos D Jr, Boaretto RM, Raij B (eds) Boletim 100: Recomendações de adubação e calagem para o estado de São Paulo. Instituto Agronômico, Campinas, pp 187–198

    Google Scholar 

  • Raij B, Alcarde JC, Cantarella H, Quaggio JA (2001) Análise Química Para Avaliação da Fertilidade de Solos Tropicais. IAC, Campinas

    Google Scholar 

  • Redd JB, Hendrix DL, Hendrix Jr CM (1992) Quality control manual for citrus processing plants. AGScience, Safety Harbour, pp. 290

  • Sartori RH, Boaretto AE, Villanueva FCA, Fernandes HMG (2008) Absorção radicular e foliar de 65Zn e sua redistribuição em laranjeiras. Rev Bras Frutic 30(2):523–527

    Article  Google Scholar 

  • Sawan ZM, Hafez SA, Basyony AE (2001) Effect of nitrogen fertilization and foliar application of plant growth retardants and zinc on cottonseed, protein and oil yields and oil properties of cotton. J Agron Crop Sci 186(3):183–191

    Article  CAS  Google Scholar 

  • Smith PF (1967) Leaf analysis of citrus. In: Childers NF nutrition of fruit crops. Somerset Press, New Jersey, pp 208–228

    Google Scholar 

  • Souza TR, Villas Bôas RL, Quaggio JA, Salomão LC (2012) Nutrientes na seiva de plantas cítricas fertirrigadas. Rev Bras Frutic 34(2):482–492

    Article  Google Scholar 

  • Srivastava AK, Singh S (2005) Zinc nutrition, a global concern for sustainable citrus production. J Sustain Agric 25(3):5–42

    Article  Google Scholar 

  • Syvertsen JP, Garcia-Sanchez F (2014) Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot 103:128–137

    Article  CAS  Google Scholar 

  • Xing F, Fu XZ, Wang N, Xi J, Huang Y, Zhou W, Ling L, Peng L (2016) Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis). J Integr Agric 15(4):803–811

    Article  CAS  Google Scholar 

  • Zekri M, Koo RCJ (1992) Application of micronutrients to citrus trees through microirrigation systems. J Plant Nutr 15(11):2517–2529

    Article  CAS  Google Scholar 

  • Zhang Y, Hu CX, Tan QL, Zheng CS, Gui HP, Zeng WN, Sun XC, Zhao XH (2014) Plant nutrition status, yield and quality of Satsuma mandarin (Citrus unshiu Marc.) under soil application of Fe-EDDHA and combination with zinc and manganese in calcareous soil. Sci Hortic 174:46–53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the São Paulo Research Foundation (FAPESP, grants #2013/08288-3 and #2010/17589-9). We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), which granted RMB and DMJ fellowships.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and/or conduction. Material preparation, data collection and analysis were performed by [RM Boaretto], [LAJ Teixeira], [JA Quaggio], [FWR Hippler], [RC Fornari] and [D Mattos Jr]. The first draft of the manuscript was written by [RM Boaretto], [FWR Hippler] and [D Mattos Jr] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rodrigo Marcelli Boaretto.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Responsible Editor: Ismail Cakmak.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boaretto, R.M., Hippler, F.W.R., Teixeira, L.A.J. et al. Zinc fertilizers for Citrus production: assessing nutrient supply via fertigation or foliar application. Plant Soil 496, 179–192 (2024). https://doi.org/10.1007/s11104-023-05969-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-05969-w

Keywords

Navigation