Skip to main content
Log in

Linking root morphology and anatomy with transporters for mineral element uptake in plants

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

One of the most important roles of plant roots is to take up mineral nutrients from soils for growth and development. The uptake of mineral nutrients is mediated by many different transporters expressed in the roots. The morphology and anatomy of the roots differ within plant species, but their link with nutrient uptake is poorly understood.  

Scope

In this review, we aim to describe the spatial uptake site of mineral nutrients along the root axes and the different roles of root hairs and lateral roots in mineral element uptake in association with the distinct expression pattern of transporters, mainly by comparing two typical model plants: Arabidopsis and rice.

Conclusions

We propose different uptake systems for mineral elements, which are formed by a pair of influx-efflux transporters, based on the root anatomy, allocation and polar localization of transporters. Furthermore, we discuss the role of Casparian strips in the uptake of mineral nutrients. Finally, we propose future prospects for linking root morphology and anatomy to transporters for a better and safe crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alassimone J, Naseer S, Geldner N (2010) A developmental framework for endodermal differentiation and polarity. Proc Natl Acad Sci USA 107:5214–5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson JA, Rasmussen A, Traini R, Vob U, Sturrock C, Mooney SJ, Wells DM, Bennett MJ (2014) Branching out in roots: uncovering form, function, and regulation. Plant Physiol 166:538–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Attia H, Arnaud N, Karray N, Lachaal M (2008) Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. Physiol Plant 132:293–305

    Article  CAS  PubMed  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Barberon M, Vermeer JE, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N (2016) Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164:447–459

    Article  CAS  PubMed  Google Scholar 

  • Barbosa I, Rojas-Murcia N, Geldner N (2019) The Casparian strip-one ring to bring cell biology to lignification? Curr Opin Biotechnol 56:121–129

    Article  CAS  PubMed  Google Scholar 

  • Blakely LM, Evans TA (1979) Cell dynamics studies on the pericycle of radish seedling roots. Plant Sci Lett 14:79–83

    Article  CAS  Google Scholar 

  • Bole JB (1973) Influence of root hairs in supplying soil phosphorus to wheat. Can J Soil Sci 53:169–175

    Article  CAS  Google Scholar 

  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canales J, Contreras-Lopez O, Alvarez JM, Gutierrez RA (2017) Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana Plant J 92:305–316

    Article  CAS  PubMed  Google Scholar 

  • Che J, Yamaji N, Ma JF (2018) Efficient and flexible uptake system for mineral elements in plants. New Phytol 219:513–517

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Cho HT (2019) Root hairs enhance Arabidopsis seedling survival upon soil disruption. Sci Rep 9:1–10

    Google Scholar 

  • Coudert Y, Perin C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226

    Article  CAS  PubMed  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2002) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Article  CAS  Google Scholar 

  • Ferguson IB, Clarkson DT (1976) Simultaneous uptake and translocation of magnesium and calcium in barley (Hordeum vulgare L.) roots. Planta 128:267–269

    Article  CAS  PubMed  Google Scholar 

  • Fohse D, Claassen N, Jungk A (1991) Phosphorus efficiency of plants. Plant Soil 132:261–272

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (1998) Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil 198:147–152

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2003) Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low-and high-P soils. Plant Cell Environ 26:1759–1766

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A (2001) A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant Soil 235:211–219

    Article  CAS  Google Scholar 

  • Genc Y, Huang CY, Langridge P (2007) A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J Exp Bot 58:2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60

    Article  CAS  PubMed  Google Scholar 

  • Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development in Norway spruce (Picea abies (L.) Karst.). J Plant Physiol 133:486–491

    Article  Google Scholar 

  • Hochholdinger F, Yu P, Marcon C (2018) Genetic control of root system development in maize. Trends Plant Sci 23:79–88

    Article  CAS  PubMed  Google Scholar 

  • Hoshikawa K (1989) The growing rice plant: An anatomical monograh. Nobunkyo, Tokyo

  • Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci USA 110:14498–14503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Konishi N, Yamaji N, Shao JF, Mitani-Ueno N, Ma JF (2022a) Boron uptake in rice is regulated post-translationally via a clathrin-independent pathway. Plant Physiol 188:1649–1664

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Yamaji N, Sakurai G, Mitani-Ueno N, Konishi N, Ma JF (2022b) A pericycle-localized silicon transporter for efficient xylem loading in rice. New Phytol 234:197–208

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Wang P, Yamaji N, Ma JF (2020a) Plant nutrition for human nutrition: hints from rice research and future perspectives. Mol Plant 13:825–835

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sasaki A, Yamaji N, Okada H, Mitani-Ueno N, Ma JF (2020b) The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol 183:1224–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima C (1988) The root system formation in rice plants. 3 Quantitative studies. Jpn J Crop Sci 57:26–36

    Article  Google Scholar 

  • Kamiya T, Borghi M, Wang P, Danku JM, Kalmbach L, Hosmani PS, Naseer S, Fujiwara T, Geldner N, Salt DE (2015) The MYB36 transcription factor orchestrates Casparian strip formation. Proc Natl Acad Sci USA 112:10533–10538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Ushiwatari T, Suyama A, Tominaga-Wada R, Wada T, Maruyama-Nakashita A (2019) Contribution of root hair development to sulfate uptake in Arabidopsis. Plants 8:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinsawang S, Sumranwanich T, Wannaro A, Saengwilai P (2018) Effects of root hair length on potassium acquisition in rice (Oryza sativa L.). Appl Ecol Environ Res 16:1609–1620

    Article  Google Scholar 

  • Kohanova J, Martinka M, Vaculik M, White PJ, Hauser MT, Lux A (2018) Root hair abundance impacts cadmium accumulation in Arabidopsis thaliana shoots. Ann Bot 122:903–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412

    Article  CAS  PubMed  Google Scholar 

  • Li B, Kamiya T, Kalmbach L, Yamagami M, Yamaguchi K, Shigenobu S, Sawa S, Danku JM, Salt DE, Geldner N, Fujiwara T (2017) Role of LOTR1 in nutrient transport through organization of spatial distribution of root endodermal barriers. Curr Biol 27:758–765

    Article  CAS  PubMed  Google Scholar 

  • Li J, Long Y, Qi GN, Li J, Xu Zj WuWH, Wang Y (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 26:3387–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Yu Q, Gu X, Xu C, Qi S, Wang H, Zhong F, Baskin TI, Rahman A, Wu S (2018) Construction of a functional Casparian strip in non-endodermal lineages is orchestrated by two parallel signaling systems in Arabidopsis thaliana Curr Biol 28:2777–2786

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Donner E, Lombi E, Li R, Wu Z, Zhao FJ, Wu P (2013) Assessing the contributions of lateral roots to element uptake in rice using an auxin-related lateral root mutant. Plant Soil 372:125–136

    Article  CAS  Google Scholar 

  • Lopez-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2022) Harnessing root architecture to address global challenges. Plant J 109:415–431

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Shen RF, Shao JF (2021) Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 31:3–10

    Article  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic, Cambridge

    Google Scholar 

  • Mitani-Ueno N, Ma JF (2021) Linking transport system of silicon with its accumulation in different plant species. Soil Sci Plant Nutr 67:10–17

    Article  CAS  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflug Arch Eur J Phy 456:679–686

    Article  CAS  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler J, Wissuwa M (2016) Superior root hair formation confers root efficiency in some, but not all, rice genotypes upon P deficiency. Front Plant Sci 7:1935

    Article  PubMed  PubMed Central  Google Scholar 

  • Paszkowski U, Boller T (2002) The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214:584–590

    Article  CAS  PubMed  Google Scholar 

  • Peterson RL, Farquhar ML (1996) Root hairs: specialized tubular cells extending root surfaces. Bot Rev 62:1–40

    Article  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha -subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins NE, Trontin C, Duan L, Dinneny JR (2014) Beyond the barrier: communication in the root through the endodermis. Plant Physiol 166:551–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakurai G, Satake A, Yamaji N, Mitani-Ueno N, Yokozawa M, Feugier FG, Ma JF (2015) In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots. Plant Cell Physiol 56:631–639

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2016) Transporters involved in mineral nutrient uptake in rice. J Exp Bot 67:3645–3653

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Duan Y, Mitani-Ueno N, Che J, Jia J, Liu J, Guo J, Ma JF, Gong H (2020) Tomato roots have a functional silicon influx transporter but not a functional silicon efflux transporter. Plant Cell Environ 43:732–744

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Duan Y, Qi X, Zhang L, Huo H, Gong H (2018) Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene. Ann Bot 122:641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Guo J, Duan Y, Zhang T, Huo H, Gong H (2017) Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus Physiol Plant 159:201–214

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci USA 107:5220–5225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka N, Kato M, Tomioka R, Kurata R, Fukao Y, Aoyama T, Maeshima M (2014) Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses. J Exp Bot 65:1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y, Moriyama S, Che J, Moriyama Y, Iwasaki K, Ma JF (2015) A polarly localized transporter for efficient manganese uptake in rice. Nat Plants 1:1–8

    Article  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Very AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H (2014) Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species. J Plant Physiol 171:748–769

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yoshinari A, Shimada T, Hara-Nishimura I, Mitani-Ueno N, Ma JF, Naito S, Takano J (2017) Polar localization of the NIP5;1 boric acid channel is maintained by endocytosis and facilitates boron transport in Arabidopsis roots. Plant Cell 29:824–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yamaji N, Huang S, Zhang X, Shi M, Fu S, Yang G, Ma JF, Xia J (2019) OsCASP1 is required for Casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell 31:2636–2648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang B, Chen Z, Wu M, Chao D, Wei Q, Xin Y, Li L, Ming Z, Xia J (2022) Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. Plant Cell. https://doi.org/10.1093/plcell/koac140

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen TJ, Schnable PS (1994) Analyses of mutants of three genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am J Bot 81:833–842

    Article  Google Scholar 

  • Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinari A, Takano J (2017) Insights into the mechanisms underlying boron homeostasis in plants. Front Plant Sci 8:1951

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu E, Yamaji N, Ma JF (2020) Altered root structure affects both expression and cellular localization of transporters for mineral element uptake in rice. Plant Cell Physiol 61:481–491

    Article  CAS  PubMed  Google Scholar 

  • Yu E, Yamaji N, Mao C, Wang H, Ma JF (2021) Lateral roots but not root hairs contribute to high uptake of manganese and cadmium in rice. J Exp Bot 72:7219–7228

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Wang P (2020) Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 446:1–21

    Article  CAS  Google Scholar 

  • Zheng R, Li H, Jiang R, Romheld V, Zhang F, Zhao FJ (2011) The role of root hairs in cadmium acquisition by barley. Environ Pollut 159:408–415

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) (KAKENHI Grant Numbers 21H05034 to JFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Feng Ma.

Additional information

Responsible Editor: Ismail Cakmak.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

En, Y., Yamaji, N. & Ma, J.F. Linking root morphology and anatomy with transporters for mineral element uptake in plants. Plant Soil 484, 1–12 (2023). https://doi.org/10.1007/s11104-022-05692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05692-y

Keywords

Navigation