Skip to main content
Log in

Inconsistencies in the root biology terminology: Let’s communicate better

  • Opinion Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Root biology is an actively developing field that includes ecological, morphological, anatomical, developmental, and evolutionary aspects. I focus this opinion paper entirely on the inconsistencies in the usage of various terms in root biology. When terminology is used inconsistently, this may create a confusion in understanding, and the goal of this article is to identify the most common errors and suggest how to avoid them.

Identified inconsistencies and proposed suggestions

The proposed suggestions are as follows: (1) When definitions are not established or ambiguous, it is recommended to describe what is meant (“basal root” term is discussed); (2) Avoid using ambiguous terms (it is recommended not to use the term “secondary root”); (3) When known, give preference to organogenesis-related terminology (the terms “primary root”, “tap root”, and “main root” are compared); (4) Avoid using terms established for one identity to describe a different identity (inappropriate term selection is discussed, and it is recommended not to use the term “basal meristem” in the context of the root apex longitudinal zonation).

Towards better communication 

Overall, I discuss how to avoid inconsistencies in terminology and achieve better communication among root biologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-Rhizo: Integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956

    Article  CAS  PubMed  Google Scholar 

  • Aziz AA, Lim KB, Rahman EKA, Nurmawati MH, Zuruzi AS (2020) Agar with embedded channels to study root growth. Sci Rep 10:1–12

    Article  Google Scholar 

  • Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80:758–771

    Article  CAS  PubMed  Google Scholar 

  • Baluska F, Barlow PW, Baskin TI, Chen R, Feldman L, Forde BG, Geisler M, Jernstedt J, Menzel D, Muday GK (2005) What is apical and what is basal in plant root development? Trends in Plant Science 10:409–411

    Article  CAS  PubMed  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling–response nexus in the root. Trends Plant Sci 15:402–408

    Article  PubMed  Google Scholar 

  • Banda J, Bellande K, von Wangenheim D, Goh T, Guyomarc’h S, Laplaze L, Bennett MJ (2019) Lateral root formation in Arabidopsis: a well-ordered LRexit. Trends Plant Sci 24:826–839

    Article  CAS  PubMed  Google Scholar 

  • Baque M, Hahn E-J, Paek K-Y (2010) Induction mechanism of adventitious root from leaf explants of Morinda citrifolia as affected by auxin and light quality. Vitro Cell Dev Biology-Plant 46:71–80

    Article  CAS  Google Scholar 

  • Barlow PW (1986) Adventitious roots of whole plants: their forms, functions, and evolution. New Root Formation in Plants and Cuttings. Springer, Berlin, pp 67–110

  • Barlow PW (2001) Primary root. Encyclopedia of Life Sciences, Nature Publishing Group, London, 1–3

  • Baskin TI, Peret B, Baluska F, Benfey PN, Bennett M, Forde BG, Gilroy S, Helariutta Y, Hepler PK, Leyser O, Masson PH, Muday GK, Murphy AS, Poethig S, Rahman A, Roberts K, Scheres B, Sharp RE, Somerville C (2010) Shootward and rootward: peak terminology for plant polarity. Trends Plant Sci 15:593–594

    Article  CAS  PubMed  Google Scholar 

  • Basu P, Brown KM, Pal A (2011) Detailed quantitative analysis of architectural traits of basal roots of young seedlings of bean in response to auxin and ethylene. Plant Physiol 155:2056–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr-Hersey JE, Ritz K, Bengough GA, Mooney SJ (2020) Reorganisation of rhizosphere soil pore structure by wild plant species in compacted soils. J Exp Bot 71:6107–6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beemster GTS, Fiorani F, Inze D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8:154–158

    Article  CAS  PubMed  Google Scholar 

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666

    Article  CAS  PubMed  Google Scholar 

  • Boerio G (1829) Dizionario del Dialetto Veneziano. Venezia, Santini

    Google Scholar 

  • Byrne JM, Pesacreta TC, Fox JA (1977) Development and structure of the vascular connection between the primary and secondary root of Glycine max (L.) Merr. Am J Bot 64:946–959

    Article  Google Scholar 

  • Chen H, Chen C, Yu F (2021) Biochar improves root growth of Sapium sebiferum (L.) Roxb. container seedlings. Agronomy 11:1242

    Article  CAS  Google Scholar 

  • Choi SM, Son SH, Yun SR, Kwon OW, Seon JH, Paek KY (2000) Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Planr Cell Tissue Organ Cult 62:187–193

    Article  CAS  Google Scholar 

  • Clowes FAL (1961) Apical meristems. BlackwellScientific Publications Ltd., Oxford

    Google Scholar 

  • De-Jesús-García R, Rosas U, Dubrovsky JG (2020) The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. Funct Plant Biol 47:383–397. https://doi.org/10.1071/FP19144

    Article  PubMed  Google Scholar 

  • Della Rovere F, Fattorini L, D’Angeli S, Veloccia A, Falasca G, Altamura MM (2013) Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of arabidopsis. Ann Bot. https://doi.org/10.1093/aob/mct215

  • Dhonukshe P, Tanaka H, Goh T, Ebine K, Mähönen AP, Prasad K, Blilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B, Friml J (2008) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456:962–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, Busch W, Novak O, Ljung K, Di Paola L (2017) Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci 114:E7641–E7649

    Article  PubMed  PubMed Central  Google Scholar 

  • Dotson BR, Soltan D, Schmidt J, Areskoug M, Rabe K, Swart C, Widell S, Rasmusson AG (2018) The antibiotic peptaibol alamethicin from Trichoderma permeabilises Arabidopsis root apical meristem and epidermis but is antagonised by cellulase-induced resistance to alamethicin. BMC Plant Biol 18:1–11

    Article  Google Scholar 

  • Du Y, Scheres B (2017) Lateral root formation and the multiple roles of auxin. J Exp Bot 69:155–167

    Article  Google Scholar 

  • Dubrovsky JG (1997) Determinate primary-root growth in seedlings of Sonoran Desert Cactaceae; its organization, cellular basis, and ecological significance. Planta 203:85–92

    Article  CAS  Google Scholar 

  • Dubrovsky JG, Gambetta GA, Hern ndez-Barrera A, Shishkova S, Gonz lez I (2006) Lateral root initiation in Arabidopsis: Developmental window, spatial patterning, density and predictability. Ann Bot 97:903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrovsky JG, Shishkova S (2013) Developmental adaptations in roots of desert plants with special emphasis on cacti. In: Eshel A, Beeckman T (eds) Plant roots: the hidden half, Fourth Edition. CRC Press, Taylor and Francis Group, Boca Raton, 413–430

  • Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, Chen YL, Rengel Z, Diggle AJ (2013) Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 372:93–124

    Article  CAS  Google Scholar 

  • Esau K (1965) Plant Anatomy, 2nd edn. Wiley, New York

  • Freixes S, Thibaud MC, Tardieu F, Muller B (2002) Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant Cell Environ 25:1357–1366

    Article  CAS  Google Scholar 

  • Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon-Cochard C, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde-Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Å, Lambers H, Salmon V, Tharayil N, McCormack ML (2021) A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol 232:973–1122. https://doi.org/10.1111/nph.17572

    Article  PubMed  PubMed Central  Google Scholar 

  • Geneve RL, Kester ST (1991) Polyamines and adventitious root formation in the juvenile and mature phase of English ivy. J Exp Bot 42:71–75

    Article  CAS  Google Scholar 

  • Gibbs DJ, Voß U, Harding SA, Fannon J, Moody LA, Yamada E, Swarup K, Nibau C, Bassel GW, Choudhary A (2014) At MYB 93 is a novel negative regulator of lateral root development in Arabidopsis. New Phytol 203:1194–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Sánchez JdJ, Santiago-Sandoval I, Lara-González JA, Colchado-López J, Cervantes CR, Vélez P, Reyes-Santiago J, Arias S, Rosas U (2021) Growth patterns in seedling roots of the pincushion cactus Mammillaria reveal trends of intra-and inter-specific variation. Front Plant Sci 12:750623. https://doi.org/10.3389/fpls.2021.750623

  • Gregory PJ (2006) Plant roots: growth, activity and interactions with the soil. Wiley, Hoboken

  • Groff PA, Kaplan DR (1988) The relation of root systems to shoot systems in vascular plants. Bot Rev 54:387–422. https://doi.org/10.1007/bf02858417

    Article  Google Scholar 

  • Hanslin HM, Bischoff A, Hovstad KA (2019) Root growth plasticity to drought in seedlings of perennial grasses. Plant Soil 440:551–568

    Article  CAS  Google Scholar 

  • Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L, Montesinos JC, Gallemí M, Semerádová H, Rauter T, Stenzel I, Persiau G, Benade F, Bhalearo R, Sýkorová E, Gorzsás A, Sechet J, Mouille G, Heilmann I, De Jaeger G, Ludwig-Müller J, Benková E (2020) Synergistic on Auxin and Cytokinin 1 positively regulates growth and attenuates soil pathogen resistance. Nat Commun 11:2170. https://doi.org/10.1038/s41467-020-15895-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov VB, Dubrovsky JG (2013) Longitudinal zonation pattern in plant roots: conflicts and solutions. Trends Plant Sci 18:237–243. https://doi.org/10.1016/j.tplants.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  • Jaillais Y, Santambrogio M, Rozier F, Fobis-Loisy I, Miège C, Gaude T (2007) The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130:1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Yung V, Chiba T, Feldman LJ (2018) Longitudinal patterning in roots: a GATA2–auxin interaction underlies and maintains the root transition domain. Planta 247:831–843

    Article  CAS  PubMed  Google Scholar 

  • Jing H, Strader LC (2019) Interplay of auxin and cytokinin in lateral root development. Int J Mol Sci 20:486

    Article  CAS  PubMed Central  Google Scholar 

  • Johnson JF, Vance CP, Allan DL (1996) Phosphorus deficiency in Lupinus albus (Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase). Plant Physiol 112:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, Keurentjes JJ, Korte A, Haring MA, de Boer G-J, Testerink C (2017) Genetic components of root architecture remodeling in response to salt stress. Plant Cell 29:3198–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerstens M, Hesen V, Yalamanchili K, Bimbo A, Grigg S, Opdenacker D, Beeckman T, Heidstra R, Willemsen V (2021) Nature and nurture: Genotype-dependent differential responses of root architecture to agar and soil environments. Genes 12:1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakehal A, Dob A, Rahneshan Z, Novák O, Escamez S, Alallaq S, Strnad M, Tuominen H, Bellini C (2020) Ethylene Response Factor 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. bioRxiv: 2019.2012. 2027.886796

  • Lakehal A, Bellini C (2019) Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol Plant 165:90–100

    Article  CAS  PubMed  Google Scholar 

  • Lecompte F, Pages L, Ozier-Lafontaine H (2005) Patterns of variability in the diameter of lateral roots in the banana root system. New Phytol 167:841–850

    Article  PubMed  Google Scholar 

  • Leskovar DI, Cantliffe DJ (1992) Pepper seedling growth response to drought stress and exogenous abscisic acid. J Am Soc Hortic Sci 117:389–393

    Article  CAS  Google Scholar 

  • Lin C, Sauter M (2018) Control of adventitious root architecture in rice by darkness, light, and gravity. Plant Physiol 176:1352–1364

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moya F, Escudero N, Zavala-Gonzalez EA, Esteve-Bruna D, Blázquez MA, Alabadí D, Lopez-Llorca LV (2017) Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging–an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Lynch JP, Brown KM (2012) New roots for agriculture: exploiting the root phenome. Philos Trans R Soc B Biol Sci 367:1598–1604

    Article  Google Scholar 

  • Meyer-Berthaud B, Decombeix A-L, Ermacora X (2013) Archaeopterid root anatomy and architecture: new information from permineralized specimens of Famennian age from Anti-Atlas (Morocco). Int J Plant Sci 174:364–381

    Article  Google Scholar 

  • Miguel MA, Widrig A, Vieira RF, Brown KM, Lynch JP (2013) Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris). Ann Bot 112:973–982. https://doi.org/10.1093/aob/mct164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ, Molina-Freaner F, Tinoco-Ojanguren C, Paolillo DJ Jr (2002) The biomechanics of Pachycereus pringlei root systems. Am J Bot 89:12–21

    Article  PubMed  Google Scholar 

  • North GB, Brinton EK, Garrett TY (2008) Contractile roots in succulent monocots: convergence, divergence and adaptation to limited rainfall. Plant Cell Environ 31:1179–1189

    Article  PubMed  Google Scholar 

  • Norwood M, Toldi O, Richter A, Scott P (2003) Investigation into the ability of roots of the poikilohydric plant Craterostigma plantagineum to survive dehydration stress. J Exp Bot 54:2313–2321

    Article  CAS  PubMed  Google Scholar 

  • Ohashi-Ito K, Matsukawa M, Fukuda H (2013) An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol 54:398–405

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Escobedo MA, Ivanov VB, Ransom-Rodríguez I, Arriaga-Mejía G, Ávila H, Baklanov IA, Pimentel A, Corkidi G, Doerner P, Dubrovsky JG (2016) Longitudinal zonation pattern in Arabidopsis root tip defined by a multiple structural change algorithm. Ann Bot 118:763–776

    Article  PubMed  PubMed Central  Google Scholar 

  • Paolillo DJ (1963) The developmental anatomy of Isoetes. Illinois biological monographs; v 31 The University of Illinois Press, Urbana, 1-130

  • Paolillo DJ Jr (1982) Meristems and evolution: developmental correspondence among the rhizomorphs of the lycopsids. Am J Bot 69:1032–1042

    Article  Google Scholar 

  • Paolillo DJ Jr, Zobel RW (2002) The formation of adventitious roots on root axes is a widespread occurrence in field-grown dicotyledonous plants. Am J Bot 89:1361–1372

    Article  PubMed  Google Scholar 

  • Pasternak T, Haser T, Falk T, Ronneberger O, Palme K, Otten L (2017) A 3D digital atlas of the Nicotiana tabacum root tip and its use to investigate changes in the root apical meristem induced by the Agrobacterium 6b oncogene. Plant J 92:31–42

    Article  CAS  PubMed  Google Scholar 

  • Perotti MF, Ribone PA, Cabello JV, Ariel FD, Chan RL (2019) AtHB23 participates in the gene regulatory network controlling root branching, and reveals differences between secondary and tertiary roots. Plant J 100:1224–1236

    Article  CAS  PubMed  Google Scholar 

  • Riopel JL, Steeves TA (1964) Studies on the roots of Musa acuminata cv. Gros Michel: 1. The anatomy and development of main roots. Ann Bot 28:475–490

    Article  Google Scholar 

  • Romberger JA, Hejnowicz Z, Hill JF (1993) Plant Structure: Function and Development. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Salvi E, Di Mambro R, Sabatini S (2020a) Dissecting mechanisms in root growth from the transition zone perspective. J Exp Bot 71:2390–2396

    Article  CAS  PubMed  Google Scholar 

  • Salvi E, Rutten JP, Di Mambro R, Polverari L, Licursi V, Negri R, Ioio RD, Sabatini S, Ten Tusscher K (2020b) A self-organized PLT/Auxin/ARR-B network controls the dynamics of root zonation development in Arabidopsis thaliana. Dev Cell 53:431–443 e423

    Article  CAS  PubMed  Google Scholar 

  • Seago JL (1973) Developmental anatomy in roots of Ipomoea purpurea. II. Initiation and development of secundary roots. Am J Bot 60:607–618

    Article  Google Scholar 

  • Shah SRU, Agback P, Lundquist P-O (2015) Root morphology and cluster root formation by seabuckthorn (Hippophaë rhamnoides L.) in response to nitrogen, phosphorus and iron deficiency. Plant Soil 397:75–91

    Article  Google Scholar 

  • Shahzad Z, Eaglesfield R, Carr C, Amtmann A (2020) Cryptic variation in RNA-directed DNA-methylation controls lateral root development when auxin signalling is perturbed. Nat Commun 11:1–11

    Article  Google Scholar 

  • Sheng L, Hu X, Du Y, Zhang G, Huang H, Scheres B, Xu L (2017) Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development 144:3126–3133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shishkova S, García-Mendoza E, Castillo-Díaz V, Moreno NE, Dubrovsky JA (2006) JG Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran desert Cactaceae. Plant Cell Rep 26:547–557. https://doi.org/10.1007/s00299-00006-00269-00294

    Article  PubMed  Google Scholar 

  • Shishkova S, Las Peñas ML, Napsucialy-Mendivil S, Matvienko M, Kozik A, Montiel J, Patiño A, Dubrovsky JG (2013) Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait. Ann Bot 112:239–252. https://doi.org/10.1093/aob/mct100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenackers W, Klíma P, Quareshy M, Cesarino I, Kumpf RP, Corneillie S, Araújo P, Viaene T, Goeminne G, Nowack MK, Ljung K, Friml J, Blakeslee JJ, Novák O, Zažímalová E, Napier R, Boerjan W, Vanholme B (2016) cis-Cinnamic acid is a novel, natural auxin efflux inhibitor that Promotes Lateral Root Formation. Plant Physiol 173:552–565. https://doi.org/10.1104/pp.16.00943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Xu F, Guo X, Wu D, Zhang X, Lou M, Luo F, Zhao Q, Xu G, Zhang Y (2019) A strigolactone signal inhibits secondary lateral root development in rice. Front Plant Sci 10:1527. https://doi.org/10.3389/fpls.2019.01527

  • Sun X, Ren W, Wang P, Chen F, Yuan L, Pan Q, Mi G (2021) Evaluation of maize root growth and genome-wide association studies of root traits in response to low nitrogen supply at seedling emergence. Crop J 9:794–804

    Article  Google Scholar 

  • Sun-Young Y, Kato M (2001) Basal meristem and root development in Isoetes asiatica and Isoetes japonica International. J Plant Sci 162:1225–1235

    Article  Google Scholar 

  • Sutton R, Tinus R (1983) Root and root system terminology. For Sci 29:1–137. https://doi.org/10.1093/forestscience/1029.s1091.a0001

    Article  Google Scholar 

  • Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116:83–91

    Article  CAS  PubMed  Google Scholar 

  • Trinh CD, Laplaze L, Guyomarc’h S (2018) Lateral root formation: Building a meristem de novo. Annual Plant Reviews 1:847–890

    Article  Google Scholar 

  • Vermeer JE, Geldner N (2015) Lateral root initiation in Arabidopsis thaliana: a force awakens. F1000prime Rep 7:1–7

    Article  CAS  Google Scholar 

  • Waidmann S, Kleine-Vehn J (2022) Staging of emerged lateral roots in Arabidopsis thaliana. Plant Gravitropism. Springer, Humana, New York

    Google Scholar 

  • Wasson AP, Ramsay K, Jones MG, Mathesius U (2009) Differing requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula. New Phytol 183:167–179

    Article  CAS  PubMed  Google Scholar 

  • Webb DT (1983) Developmental anatomy of light-induced root nodulation by Zamia pumila L. seedlings in sterile culture. Am J Bot 70:1109–1117

    Article  Google Scholar 

  • Yang Z-B, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zobel R (1989) Root growth and development. In: Keister DL, Cregan PB, editors. The rhizosphere and plant growth. Paper presented at the Beltsville Symposium 14. Kluwer Academic, Dordrecht, p 61–71

  • Zobel R, Waisel Y (2010) A plant root system architectural taxonomy: a framework for root nomenclature. Plant Biosyst 144:507–512

    Article  Google Scholar 

  • Zobel RW (2011) A developmental genetic basis for defining root classes. Crop Sci 51:1410–1413

    Article  Google Scholar 

  • Zhou S, Zhang M, Chen S, Xu W, Zhu L, Gong S, He X, Wang P (2020) Acid resistance of Masson pine (Pinus massoniana Lamb.) families and their root morphology and physiological response to simulated acid deposition. Sci Rep 10:1–13

    Article  Google Scholar 

Download references

Acknowledgements

This opinion paper is dedicated to Prof. Dr. Hans Lambers on the occasion of his 30 years as Editor in Chief of Plant and Soil, and I sincerely thank Hans for his invitation to write this opinion paper. I also thank S. Ainsworth for help with bibliography and preparation of Fig. 1 and G. Rodriguez-Alonso for critical reading of this article. The work in my laboratory is partially supported by Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT) grant A1-S-9236 and by Dirección General de Asuntos del Personal Académico-(DGAPA)—Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica-UNAM (PAPIIT) grant IN204221. The author has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph G. Dubrovsky.

Additional information

Responsible Editor: Philip John White.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovsky, J.G. Inconsistencies in the root biology terminology: Let’s communicate better. Plant Soil 476, 713–720 (2022). https://doi.org/10.1007/s11104-022-05415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05415-3

Keywords

Navigation