Skip to main content
Log in

Positive microbial legacy and short-term clonal plasticity aid grazing tolerance of a widespread grass species

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Legacy effects arising from grazing may alter the effect of plant-soil feedback (PSF), plant-phyllosphere feedback (PPF) and/or transgenerational plasticity on plant performance. Understanding how effects from these mechanisms are influenced by grazing can help predict grassland production and ecosystem dynamics.

Methods

Plant clonal buds and shoot materials of Leymus chinensis (a clonal grass species widely distributed across the eastern Eurasian Steppes), sterilised and non-sterilised soils were collected from sites subjected to long-term grazing or no grazing. We then conducted a series of studies to determine the presence and context-dependency of (1) PSF, (2) PPF and (3) clonal transgenerational plasticity mechanisms on long-term grazing by measuring plant above/belowground biomass, height and density.

Results

Inoculation with soil biota conditioned by L. chinensis from grazed sites increased root growth by 83.99% (positive PSF), but not inoculum from ungrazed sites (neutral PSF). Shoot inocula from grazed and ungrazed sites had similar positive effects on plant growth (positive PPF). Clonal offspring from grazed sites showed transgenerational trait plasticity in terms of herbivory-avoidance (21.24% height reduction and 84.62% tiller density increase), but aboveground production was unaffected. Additionally, grazed field plots with a year of grazing exclusion showed similar plant heights and aboveground biomass as ungrazed plots, which indicated short-term transgenerational trait plasticity.

Conclusions

Positive PSF and short-term clonal transgenerational plasticity of L. chinensis depended on past grazing activity, and together with positive PPF, can aid their recovery and fitness in subsequent growing seasons. Our findings highlighted context-dependent plant–microorganism interactions and trans-generational feedback of plants in response to grazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril AB, Torres PA, Bucher EH (2005) The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. J Trop Ecol: 103–107.

  • Agrawal AA (2001) Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect? Am Nat 157:555–569

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press

    Google Scholar 

  • Baxendale C, Orwin KH, Poly F, Pommier T, Bardgett RD (2014) Are plant–soil feedback responses explained by plant traits? New Phytol 204:408–423

    Article  PubMed  Google Scholar 

  • Benson EJ, Hartnett DC (2006) The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie. Plant Ecol 187:163–178

    Article  Google Scholar 

  • Bezemer TM, van der Putten WH, Martens H, van de Voorde TF, Mulder PP, Kostenko O (2013) Above-and below-ground herbivory effects on below-ground plant–fungus interactions and plant–soil feedback responses. J Ecol 101:325–333

    Article  CAS  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Brinkman E, Van der Putten WH, Bakker EJ, Verhoeven KJ (2010) Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol 98:1063–1073

    Article  Google Scholar 

  • Briske DD, Joyce LA, Polley HW, Brown JR, Wolter K, Morgan JA, McCarl BA, Bailey DW (2015) Climate-change adaptation on rangelands: linking regional exposure with diverse adaptive capacity. Front Ecol Environ 13:249–256

    Article  Google Scholar 

  • Carvalho SD, Castillo JA (2018) Influence of light on plant–phyllosphere interaction. Front Plant Sci 9:1482

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen T, Christensen M, Nan Z, Hou F (2017) The effects of different intensities of long-term grazing on the direction and strength of plant–soil feedback in a semiarid grassland of Northwest China. Plant Soil 413:303–317

    Article  CAS  Google Scholar 

  • Chen T, Nan Z, Kardol P, Duan T, Song H, Wang J, Li C, Hou F (2018) Effects of interspecific competition on plant-soil feedbacks generated by long-term grazing. Soil Biol Biochem 126:133–143

    Article  CAS  Google Scholar 

  • Crawford KM, Bauer JT, Comita LS, Eppinga MB, Johnson DJ, Mangan SA, Queenborough SA, Strand AE, Suding KN, Umbanhowar J (2019) When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol Lett 22:1274–1284

    Article  PubMed  Google Scholar 

  • De Deyn GB, Quirk H, Oakley S, Ostle NJ, Bardgett RD (2012) Increased plant carbon translocation linked to overyielding in grassland species mixtures. PLoS One 7:e45926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donelson JM, Salinas S, Munday PL, Shama LN (2018) Transgenerational plasticity and climate change experiments: Where do we go from here? Global Change Biol 24:13–34

    Article  Google Scholar 

  • Dudenhöffer JH, Ebeling A, Klein AM, Wagg C (2018) Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. J Ecol 106:230–241

    Article  CAS  Google Scholar 

  • Fang K, Chen L, Zhou J, Yang Z-P, Dong X-F, Zhang H-B (2019) Plant–soil–foliage feedbacks on seed germination and seedling growth of the invasive plant Ageratina adenophora. Proc R Soc B 286:20191520

    Article  PubMed  PubMed Central  Google Scholar 

  • Farré-Armengol G, Filella I, Llusia J, Peñuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–860

    Article  CAS  PubMed  Google Scholar 

  • Gao Z-j, Liu J-b, An Q-q, Zhi W, Chen S-l, Xu B-c (2017) Photosynthetic performance of switchgrass and its relation to field productivity: A three-year experimental appraisal in semiarid Loess Plateau. J Integr Agric 16:1227–1235

    Article  Google Scholar 

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press

    Google Scholar 

  • Gong T, Xin XF (2021) Phyllosphere microbiota: Community dynamics and its interaction with plant hosts. J Integr Plant Biol 63:297–304

    Article  PubMed  Google Scholar 

  • Grant RC, Botha J, Grant TC, Peel MJ, Smit IP (2019) When less is more: heterogeneity in grass patch height supports herbivores in counter-intuitive ways. African Journal of Range & Forage Science 36:1–8

    Article  Google Scholar 

  • Kaisermann A, de Vries FT, Griffiths RI, Bardgett RD (2017) Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol 215:1413–1424

    Article  CAS  PubMed  Google Scholar 

  • Kéry M, Matthies D, Spillmann HH (2000) Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana lutea. J Ecol 88:17–30

    Article  Google Scholar 

  • Kos M, Veendrick J, Bezemer TM (2013) Local variation in conspecific plant density influences plant–soil feedback in a natural grassland. Basic Appl Ecol 14:506–514

    Article  Google Scholar 

  • Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4:1–10

    Article  Google Scholar 

  • Laforest-Lapointe I, Messier C, Kembel SW (2017) Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. MSystems 2.

  • Landgraf R, Schaarschmidt S, Hause B (2012) Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant, Cell Environ 35:1344–1357

    Article  CAS  Google Scholar 

  • Leopold A (1949) The control of tillering in grasses by auxin. Am J Bot: 437–440.

  • Li X, Wu Z, Liu Z, Hou X, Badgery W, Guo H, Zhao Q, Hu N, Duan J, Ren W (2015) Contrasting effects of long-term grazing and clipping on plant morphological plasticity: evidence from a rhizomatous grass. PLoS One 10:e0141055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Hu N, Yin J, Ren W, Fry E (2021) Historic grazing enhances root-foraging plasticity rather than nitrogen absorbability in clonal offspring of Leymus chinensis. Plant Soil 466:65–79

    Article  CAS  Google Scholar 

  • Liu J, Wang L, Wang D, Bonser SP, Sun F, Zhou Y, Gao Y, Teng X (2012) Plants can benefit from herbivory: stimulatory effects of sheep saliva on growth of Leymus chinensis. PloS one 7:e29259

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ma G, Zan Z, Chen A, Miao Y, Wang D, Miao R (2018) Effects of nitrogen addition and mowing on rodent damage in an Inner Mongolian steppe. Ecol Evol 8:3919–3926

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Brettell LE, Qiu Z, Singh BK (2020) Microbiome-mediated stress resistance in plants. Trends Plant Sci 25(8):733–743

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Mipam TD, Wang X, Zhang P, Lin Z, Liu X (2021a) Contrasting effects of mammal grazing on foliar fungal diseases: patterns and potential mechanisms. New Phytol 232:345–355. https://doi.org/10.1111/nph.17324

    Article  PubMed  Google Scholar 

  • Liu Y, Zhao C, Guo J, Zhang L, Xuan J, Chen A, You C (2021) Short-term phosphorus addition augments the effects of nitrogen addition on soil respiration in a typical steppe. Sci Total Environ 761:143211

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Manrubia M, van der Putten WH, Weser C, Veen C (2020) Rhizosphere and litter feedbacks to range-expanding plant species and related natives. Plant Soil 108:353–365. https://doi.org/10.1111/1365-2745.13299

    Article  Google Scholar 

  • Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GC, Van der Heijden MG, Kardol P (2018) Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142

    Article  PubMed  Google Scholar 

  • Park YS, Ryu CM (2021) Understanding plant social networking system: Avoiding deleterious microbiota but calling beneficials. Int J Mol Sci 22(7):3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perreault R, Laforest-Lapointe I (2021) Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME J: 1–7.

  • Png GK, Lambers H, Kardol P, Turner BL, Wardle DA, Laliberté E (2019) Biotic and abiotic plant–soil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development. J Ecol 107:142–153

    Article  Google Scholar 

  • Ren W, Hu N, Hou X, Zhang J, Guo H, Liu Z, Kong L, Wu Z, Wang H, Li X (2017) Long-term overgrazing-induced memory decreases photosynthesis of clonal offspring in a perennial grassland plant. Front Plant Sci 8:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero FM, Marina M, Pieckenstain FL (2016) Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 167:222–233

    Article  CAS  PubMed  Google Scholar 

  • Rosado BH, Almeida LC, Alves LF, Lambais MR, Oliveira RS (2018) The importance of phyllosphere on plant functional ecology: a phyllo trait manifesto. New Phytol 219:1145–1149

    Article  PubMed  Google Scholar 

  • Shea N, Pen I, Uller T (2011) Three epigenetic information channels and their different roles in evolution. J Evol Biol 24:1178–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone BW, Weingarten EA, Jackson CR (2018) The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews online: 533–556.

  • Sun Y-L, Hong S-K (2012) Agrobacterium tumefaciens-mediated transformation of the halophyte Leymus chinensis (Trin.). Plant Mol Biol Report 30:1253–1263

    Article  CAS  Google Scholar 

  • Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276

    Article  Google Scholar 

  • van der Putten WH, Bradford MA, Pernilla Brinkman E, van de Voorde TF, Veen G (2016) Where, when and how plant–soil feedback matters in a changing world. Funct Ecol 30:1109–1121

    Article  Google Scholar 

  • van Ruijven J, Ampt E, Francioli D, Mommer L (2020) Do soil-borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. J Ecol 108(5):1810–1821

    Article  Google Scholar 

  • Veen G, de Vries S, Bakker ES, van der Putten WH, Olff H (2014) Grazing-induced changes in plant–soil feedback alter plant biomass allocation. Oikos 123:800–806

    Article  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Du J, Zhang B, Ba L, Hodgkinson KC (2017a) Grazing intensity and phenotypic plasticity in the clonal grass Leymus chinensis. Rangeland Ecol Manage 70:740–747

    Article  Google Scholar 

  • Wang Z, Deng X, Song W, Li Z, Chen J (2017b) What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. CATENA 150:100–107

    Article  Google Scholar 

  • Whipps J, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105(6):1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Whitaker BK, Bauer JT, Bever JD, Clay K (2017) Negative plant-phyllosphere feedbacks in native Asteraceae hosts–a novel extension of the plant-soil feedback framework. Ecol Lett 20:1064–1073

    Article  PubMed  Google Scholar 

  • Wu J, Zhang Q, Li A, Liang C (2015) Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecol 30:1579–1598

    Article  Google Scholar 

  • Wubs EJ, Bezemer TM (2016) Effects of spatial plant–soil feedback heterogeneity on plant performance in monocultures. J Ecol 104(2):364–376

    Article  Google Scholar 

  • Yuan J, Li H, Yang Y (2020) The compensatory tillering in the forage grass Hordeum brevisubulatum after simulated grazing of different severity. Frontiers in Plant Science 11

  • Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM (2018) Species-specific plant–soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 188:801–811

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was supported by the Natural Science Foundation (NSF) of China (32071882; 31702161), Inner Mongolia Science and Technology Project (2021GG0055; 2021ZY0039; 2021GG0415), the Open Project Program of the Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Inner Mongolia University); Qinghai Science & Technology Project (2020-ZJ-Y03). We thank Qingshan Zhao, Junjie Duan, Zhuo Bai and Fang Mu for their assistance in the experiments.

Author information

Authors and Affiliations

Authors

Contributions

X.L. K.J. and Y.L. conceived the ideas and designed methodology; X.L., S.S. and H.S. collected the data; X.L. K.P., K.J. and Y.L. analyzed the data; X.L., K.P., K.J. and Y.L. led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding authors

Correspondence to Ke Jin or Yuanheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Hans Lambers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Png, G.K., Sun, S. et al. Positive microbial legacy and short-term clonal plasticity aid grazing tolerance of a widespread grass species. Plant Soil 473, 291–303 (2022). https://doi.org/10.1007/s11104-021-05281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05281-5

Keywords

Navigation