Skip to main content
Log in

Priming effects in the rhizosphere and root detritusphere of two wet-grassland graminoids

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The rhizosphere and root detritusphere are hotspots of microbial activity, where root-derived inputs induce intensive priming effects (PE) on soil organic carbon (SOC) decomposition. These conditions for induced PE differ between rhizosphere and detritusphere and are modified by plant traits.

Methods

Continuous labelling with 13C-depleted CO2 allowed for the partitioning of plant and soil C sources of CO2 efflux and the investigation of the PE in the rhizosphere and detritusphere of slow-growing conservative Carex acuta and fast-growing acquisitive Glyceria maxima.

Results

Glyceria allocated more C into the soil, induced higher microbial activity and a larger portion of active microorganisms, and depleted mineral N stronger than Carex. Its rhizosphere PE was 2.5 times stronger than that of Carex. Root residues (detritusphere) induced negative PE at the early stage of decomposition (1–9 months). The depletion of available organic substances in the detritusphere of more easily decomposable Glyceria roots resulted in positive PE after 3 months. The PE in the detritusphere of N-poorer Carex roots was more intensive but started after 9 months.

Conclusions

The rhizosphere PE was positive and stronger than the detritusphere PE, which switched from initially negative to positive PE after depletion of available substances during few months. More productive species with faster N-uptake and higher belowground C input (here Glyceria) induce larger rhizosphere PE than slower-growing species (here Carex). The N-rich Glyceria roots decompose faster than N-poor roots of Carex and, consequently, have a lower impact on SOC dynamics and induced a smaller positive detritusphere PE.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are included in the manuscript and supplementary materials.

Code availability

Not applicable.

References

  • Baggs EM (2006) Partitioning the components of soil respiration: A research challenge. Plant Soil 284:1–5

    Article  CAS  Google Scholar 

  • Baptist F, Aranjuelo I, Legay N, Lopez-Sangil L, Molero G, Rovira P, Nogues S (2015) Rhizodeposition of organic carbon by plants with contrasting traits for resource acquisition: Responses to different fertility regimes. Plant Soil 394:391–406

    Article  CAS  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: Root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  • Barta J, Melichova T, Vanek D, Picek T, Santruckova H (2010) Effect of ph and dissolved organic matter on the abundance of nirk and nirs denitrifiers in spruce forest soil. Biogeochemistry 101:123–132

    Article  CAS  Google Scholar 

  • Barta J, Slajsova P, Tahovska K, Picek T, Santruckova H (2014) Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in c, n and p nutrient stoichiometry in acid forest soil. Biogeochemistry 117:525–537

    Article  CAS  Google Scholar 

  • Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41:262–275

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Boddy E, Hill PW, Farrar J, Jones DL (2007) Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biol Biochem 39:827–835

    Article  CAS  Google Scholar 

  • Bruulsema TW, Duxbury JM (1996) Simultaneous measurement of soil microbial nitrogen, carbon, and carbon isotope ratio. Soil Sci Soc Am J 60:1787–1791

    Article  CAS  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardenas J, Santa F, Kaštovská E (2021) The exudation of surplus products links plant functional traits and plant-microbial stoichiometry. Land 10:840

    Article  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil c and n availability determine the priming effect: Microbial n mining and stoichiometric decomposition theories. Glob Change Biol 20:2356–2367

    Article  Google Scholar 

  • Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014) Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201:31–44

    Article  CAS  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Victoria Vaieretti M, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005) Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86:12–19

    Article  Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    Article  PubMed  Google Scholar 

  • Cros C, Alvarez G, Keuper F, Fontaine S (2019) A new experimental platform connecting the rhizosphere priming effect with co2 fluxes of plant-soil systems. Soil Biol Biochem 130:12–22

    Article  CAS  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • De Deyn GB, Quirk H, Yi Z, Oakley S, Ostle NJ, Bardgett RD (2009) Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. J Ecol 97:864–875

    Article  Google Scholar 

  • de Vries FT, Bardgett RD (2012) Plant-microbial linkages and ecosystem nitrogen retention: Lessons for sustainable agriculture. Front Ecol Environ 10:425–432

    Article  Google Scholar 

  • Dijkstra FA, Cheng W, Johnson DW (2006) Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol Biochem 38:2519–2526

    Article  CAS  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: A nutrient perspective. Front Microbiol 4:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2013) Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences 10:821–838

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of c3 plants. Oecologia 78:9–19

    Article  PubMed  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21(5):2082–94

    Article  PubMed  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Article  Google Scholar 

  • Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96

    Article  CAS  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65

    Article  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013) Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–952

    Article  CAS  Google Scholar 

  • Gargaglione V, Bahamonde HA, Peri PL (2019) Decomposition and nutrient release of grass and tree fine roots along an environmental gradient in southern patagonia. Austral Ecol 44:276–289

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Guyonnet JP, Cantarel AAM, Simon L, Haichar FeZ (2018) Root exudation rate as functional trait involved in plant nutrient-use strategy classification. Ecol Evol 8:8573–8581

    Article  PubMed  PubMed Central  Google Scholar 

  • Han M, Sun L, Gan D, Fu L, Zhu B (2020) Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biol Biochem 151:108019

    Article  CAS  Google Scholar 

  • Henneron L, Cros C, Picon-Cochard C, Rahimian V, Fontaine S (2020) Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J Ecol 108:528–545

    Article  CAS  Google Scholar 

  • Henneron L, Kardol P, Wardle DA, Cros C, Fontaine S (2020) Rhizosphere control of soil nitrogen cycling: A key component of plant economic strategies. New Phytol 228:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang J, Subke J-A (2013) Ecosystem-level controls on root-rhizosphere respiration. New Phytol 199:339–351

    Article  CAS  PubMed  Google Scholar 

  • Huo CF, Luo YQ, Cheng WX (2017) Rhizosphere priming effect: A meta-analysis. Soil Biol Biochem 111:78–84

    Article  CAS  Google Scholar 

  • Hutsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition - an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407

    Article  CAS  Google Scholar 

  • Jiang ZH, Liu YZ, Yang JP, Brookes PC, Gunina A (2021) Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: The significance of abiotic mechanisms. Geoderma 385:114877

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kastovska E, Santruckova H (2007) Fate and dynamics of recently fixed c in pasture plant-soil system under field conditions. Plant Soil 300:61–69

    Article  CAS  Google Scholar 

  • Kastovska E, Santruckova H (2011) Comparison of uptake of different n forms by soil microorganisms and two wet-grassland plants: A pot study. Soil Biol Biochem 43:1285–1291

    Article  CAS  Google Scholar 

  • Kastovska E, Edwards K, Picek T, Šantrůčková H (2014) A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant–microbe n cycling. Biogeochemistry 122:47–59

    Article  Google Scholar 

  • Kastovska E, Edwards K, Santruckova H (2017) Rhizodeposition flux of competitive versus conservative graminoid: Contribution of exudates and root lysates as affected by n loading. Plant Soil 412:331–344

    Article  CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ, Passioura JB, Batten GD, Blanchard C, Kirkegaard JA (2014) Nutrient availability limits carbon sequestration in arable soils. Soil Biol Biochem 68:402–409

    Article  CAS  Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • Kuzyakov Y (2002) Review: Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2002) Separating microbial respiration of exudates from root respiration in non-sterile soils: A comparison of four methods. Soil Biol Biochem 34:1621–1631

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Cheng W (2004) Photosynthesis controls of co2 efflux from maize rhizosphere. Plant Soil 263:85–99

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Review: Time lag between photosynthesis and carbon dioxide efflux from soil: A review of mechanisms and controls. Glob Change Biol 16:3386–3406

    Article  Google Scholar 

  • Kuzyakov Y, Xu XL (2013) Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytol 198:656–669

    Article  CAS  PubMed  Google Scholar 

  • Legay N, Baxendale C, Grigulis K, Krainer U, Kastl E, Schloter M, Bardgett RD, Arnoldi C, Bahn M, Dumont M, Poly F, Pommier T, Clement JC, Lavorel S (2014) Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann Bot 114:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13:819–828

    Article  PubMed  Google Scholar 

  • Lloyd DA, Ritz K, Paterson E, Kirk GJD (2016) Effects of soil type and composition of rhizodeposits on rhizosphere priming phenomena. Soil Biol Biochem 103:512–521

    Article  CAS  Google Scholar 

  • Ma XM, Razavi BS, Holz M, Blagodatskaya E, Kuzyakov Y (2017) Warming increases hotspot areas of enzyme activity and shortens the duration of hot moments in the root-detritusphere. Soil Biol Biochem 107:226–233

    Article  CAS  Google Scholar 

  • Marschner P, Marhan S, Kandeler E (2012) Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere. Soil Biol Biochem 49:174–183

    Article  CAS  Google Scholar 

  • Mason-Jones K, Schmucker N, Kuzyakov Y (2018) Contrasting effects of organic and mineral nitrogen challenge the n-mining hypothesis for soil organic matter priming. Soil Biol Biochem 124:38–46

    Article  CAS  Google Scholar 

  • Mastný J, Kaštovská E, Bárta J, Chroňáková A, Borovec J, Šantrůčková H, Urbanová Z, Edwards RK, Picek T (2018) Quality of doc produced during litter decomposition of peatland plant dominants. Soil Biol Biochem 121:221–230

    Article  Google Scholar 

  • Mayer J, Buegger F, Jensen ES, Schloter M, Hess J (2003) Estimating n rhizodeposition of grain legumes using a n-15 in situ stem labelling method. Soil Biol Biochem 35:21–28

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Hammerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2014a) Adjustment of microbial nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5:3694

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014b) Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:22

  • Nguyen C (2003) Rhizodeposition of organic c by plants: Mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009) Soil priming by sugar and leaf-litter substrates: A link to microbial groups. Appl Soil Ecol 42:183–190

    Article  Google Scholar 

  • Pascault N, Ranjard L, Kaisermann A, Bachar D, Christen R, Terrat S, Mathieu O, Leveque J, Mougel C, Henault C, Lemanceau P, Pean M, Boiry S, Fontaine S, Maron PA (2013) Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 16:810–822

    Article  CAS  Google Scholar 

  • Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob Change Biol 24:1–12

    Article  Google Scholar 

  • Poll C, Marhan S, Ingwersen J, Kandeler E (2008) Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biol Biochem 40:1306–1321

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Santruckova H, Bird MI, Lloyd J (2000) Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Funct Ecol 14:108–114

    Article  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Koegel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Shahzad T, Chenu C, Genet P, Barot S, Perveen N, Mougin C, Fontaine S (2015) Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol Biochem 80:146–155

    Article  CAS  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  PubMed  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Hill BH, Shah JJF (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798

    Article  CAS  PubMed  Google Scholar 

  • Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019) Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221:233–246

    Article  CAS  PubMed  Google Scholar 

  • Solly E, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore S, Schrumpf M (2014) Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382:203–218

    Article  CAS  Google Scholar 

  • Spohn M, Kuzyakov Y (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots-a soil zymography analysis. Plant Soil 379:67–77

    Article  CAS  Google Scholar 

  • Sun K, Luke McCormack M, Li L, Ma Z, Guo D (2016) Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem. Sci Rep 6:19698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:493–508

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Vale M, Nguyen C, Dambrine E, Dupouey JL (2005) Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root c concentrations. Soil Biol Biochem 37:2329–2333

    Article  CAS  Google Scholar 

  • Zamanian K, Zarebanadkouki M, Kuzyakov Y (2018) Nitrogen fertilization raises co2 efflux from inorganic carbon: A global assessment. Glob Change Biol 24:2810–2817

    Article  Google Scholar 

  • Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng WX (2014) Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol Biochem 76:183–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding by the Czech Science Foundation (GACR, project 19-17139S). YK thanks for the support by the Tyumen Oblast Government (No. 89-DON 1), the Program of Competitive Growth of Kazan Federal University and “RUDN University Strategic Academic Leadership program”. We thank our technicians Ondra Žampach, Dan Vaněk, and Lenka Čapková for their help with destructive samplings and laboratory analyses and Láďa Marek for isotopic data measurement. We thank Ryan Scott and Gabriela Scott Zemanová for the proofreading.

Funding

Funding of EK and JC-H by the project of Czech Science Foundation GACR (No. 19-17139S), funding of YK by the project of Tyumen Oblast Government (No. 89-DON 1), the Program of Competitive Growth of Kazan Federal University and “RUDN University Strategic Academic Leadership program”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kaštovská.

Ethics declarations

Conflict of interest/Competing interests

We declare no conflicts of interests.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 83.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaštovská, E., Cardenas-Hernandez, J. & Kuzyakov, Y. Priming effects in the rhizosphere and root detritusphere of two wet-grassland graminoids. Plant Soil 472, 105–126 (2022). https://doi.org/10.1007/s11104-021-05191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05191-6

Keywords

Navigation