Skip to main content

Advertisement

Log in

Dormancy cycles in Aquilegia oxysepala Trautv. et Mey. (Ranunculaceae), a species with non-deep simple morphophysiological dormancy

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Seed dormancy and the formation of a soil seed bank is important plant regeneration strategies, especially if the environment is unpredictable. The present research explores how environmental factors control seed dormancy release, and how seed dormancy is related to the soil seed bank and regeneration of the perennial Aquilegia oxysepala.

Methods

The effects of incubation temperature, light, cold and warm stratification, gibberellic acid (GA3) along with the germination phenology of A. oxysepala in the field were used to determine the type of seed dormancy. Seasonal change of seed dormancy was determined by regularly exhuming buried seeds and incubating them in laboratory conditions.

Results

A. oxysepala seeds has underdeveloped (small) embryos along with physiological dormancy at dispersal. With the increased amounts of cold stratification, the germination of A. oxysepala increased gradually. GA3 served as a substitute for cold stratification. Breaking of physiological dormancy under natural temperatures in the field occurred in winter, while growth of embryos and germination of seeds occurred in early spring. Viable seeds that had not germinated in early spring were induced into secondary dormancy by high soil temperatures.

Conclusions

A. oxysepala provides one of a few examples of dormancy cycling in seeds with morphophysiological dormancy. Freshly matured seeds of A. oxysepala seeds have non-deep simple morphophysiological dormancy. The annual dormancy–non-dormancy cycle maintains the coordination between timing of seedling emergence with favorable seasons, thus increasing the survival chances of seedlings in environments with seasonal changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson TM, Schütz M, Risch AC (2011) Seed germination cues and the importance of the soil seed bank across an environmental gradient in the Serengeti. Oikos 121:306–312

    Article  Google Scholar 

  • Baskin JM, Baskin CC (1985) The annual dormancy cycle in buried weed seeds: a continuum. Bioscience 35:492–498

  • Baskin JM, Baskin CC (1990) Germination ecophysiology of seeds of the winter annual Chaerophyllum tainturieri: a new type of morphophysiological dormancy. J Ecol 78:993–1004

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1994) Deep complex morphophysiological dormancy in seeds of the Mesic woodland herb Delphinium tricorne (Ranunculaceae). Int J Plant Sci 155:738–743

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Elsevier/Academic Press, San Diego

    Google Scholar 

  • Baskin CC, Baskin JM, Chester EW (1999) Seed dormancy in the wetland winter annual Ptilimnium nuttallii (Apiaceae). Wetlands 19:359–364

    Article  Google Scholar 

  • Baskin CC, Baskin JM, Yoshinaga A (2015) Non-deep simple morphophysiological dormancy in seeds of Cheirodendron trigynum (Araliaceae) from the montane zone of Hawaii. Seed Sci Res 25:203–209

    Article  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds. Physiology of development, germination and dormancy, third edn. New York, Springer-Verlag

    Book  Google Scholar 

  • Cao D, Baskin CC, Baskin JM, Yang F, Huang Z (2013) Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub. Ann Bot 113:171–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Chien CT, Chen SY, Chien TY, Baskin JM, Baskin CC (2011) Nondeep simple morphophysiological dormancy in seeds of Ilex maximowicziana from northern (subtropical) and southern (tropical) Taiwan. Ecol Res 26:163–171

    Article  Google Scholar 

  • Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59:758–770

    PubMed  Google Scholar 

  • Escobar DF, Silveira FA, Morellato LPC (2018) Timing of seed dispersal and seed dormancy in Brazilian savanna: two solutions to face seasonality. Ann Bot 121:1197–1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fernández-Pascual E, Pérez-Arcoiza A, Prieto JA, Díaz TE (2017) Environmental filtering drives the shape and breadth of the seed germination niche in coastal plant communities. Ann Bot 119:1169–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Finch-Savage WE, Footitt S (2017) Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J Exp Bot 68:843–856

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Forbis TA, Diggle PK (2001) Subnivean embryo development in the alpine herb Caltha leptosepala (Ranunculaceae). Can J Bot 79:635–642

    Google Scholar 

  • Fu D, Orbélia RR (2001) Aquilegia Linnaeus, Sp. Pl. 1: 533. 1753. In: Wu CY, Raven PH, Hong DY (eds) Flora of China, vol 6. Science Press, Beijing and Missouri Botanical Garden Press, St Louis, pp 278–281

    Google Scholar 

  • Gao R, Zhao R, Huang Z, Yang X, Wei X, He Z, Walck JL (2018) Soil temperature and moisture regulate seed dormancy cycling of a dune annual in a temperate desert. Environ Exp Bot 155:688–694

    Article  Google Scholar 

  • Gremer JR, Venable DL (2014) Bet hedging in desert winter annual plants: optimal germination strategies in a variable environment. Ecol Lett 17:380–387

    Article  PubMed  Google Scholar 

  • Herranz JM, Copete MA, Ferrandis P, Copete E (2010) Intermediate complex morphophysiological dormancy in the endemic Iberian Aconitum napellus subsp. castellanum (Ranunculaceae). Seed Sci Res 20:109–121

    Article  Google Scholar 

  • Hidayati SN, Baskin JM, Baskin CC (2000) Dormancy-breaking and germination requirements of seeds of four Lonicera species (Caprifoliaceae) with underdeveloped spatulate embryos. Seed Sci Res 10:459–469

    Article  Google Scholar 

  • Hitchmough JD, Gough J, Corr B (2000) Germination and dormancy in a wild collected genotype of Trollius europaeus. Seed Sci Technol 28:549–558

    Google Scholar 

  • Huang ZY, Liu SS, Bradford KJ, Venable DL (2016) The contribution of germination functional traits to population dynamics of a desert plant community. Ecology 97:250–261

    Article  PubMed  Google Scholar 

  • Karlsson LM, Milberg P (2007) Seed dormancy pattern and germination preferences of the south African annual Papaver aculeatum. S Afr J Bot 73:422–428

    Article  Google Scholar 

  • Kondo T, Sato C, Baskin JM, Baskin CC (2006) Post-dispersal embryo development, germination phenology, and seed dormancy in Cardiocrinum cordatum var. glehnii (Liliaceae s. str.), a perennial herb of the broadleaved deciduous forest in Japan. Am J Bot 93:849–859

    Article  PubMed  Google Scholar 

  • Kondo T, Mikubo M, Yamada K, Walck JL, Hidayati SN (2011) Seed dormancy in Trillium camschatcense (Melanthiaceae) and the possible roles of light and temperature requirements for seed germination in forests. Am J Bot 98:215–226

    Article  PubMed  Google Scholar 

  • Kubitzki K (2007) The families and genera of vascular plants, vol IX. Springer Ver-lag, Heidelberg

    Google Scholar 

  • Lee SY, Rhie YH, Kim KS (2015) Non-deep simple morphophysiological dormancy in seeds of Thalictrum rochebrunianum, an endemic perennial herb in the Korean peninsula. Hortic Environ Biotechnol 56:366–375

    Article  Google Scholar 

  • Lee SY, Rhie YH, Kim KS (2018) Dormancy breaking and germination requirements of seeds of Thalictrum uchiyamae (Ranunculaceae) with underdeveloped embryos. Sci Hortic 231:82–88

    Article  CAS  Google Scholar 

  • Lush WM, Kaye PE, Groves RH (1984) Germination of Clematis microphylla seeds following weathering and other treatments. Aust J Bot 32:121–129

    Article  Google Scholar 

  • Martin AC (1946) The comparative internal morphology of seeds. Am Midl Nat 36:513–660

    Article  Google Scholar 

  • Martínez-García R, Tarnita CE (2017) Seasonality can induce coexistence of multiple bet-hedging strategies in Dictyostelium discoideum via storage effect. J Theor Biol 426:104–116

    Article  PubMed  Google Scholar 

  • Mattana E, Daws MI, Fenu G, Bacchetta G (2012) Adaptation to habitat in Aquilegia species endemic to Sardinia (Italy): seed dispersal, germination and persistence in the soil. Plant Biosyst 146:374–383

    Article  Google Scholar 

  • Mondoni A, Rossi G, Probert R (2012) Temperature controls seed germination and dormancy in the European woodland herbaceous perennial Erythronium denscanis (Liliaceae). Plant Biol 14:475–480

    Article  CAS  PubMed  Google Scholar 

  • Niimi Y, Han DS, Abe S (2006) Temperatures affecting embryo development and seed germination of Christmas rose (Helleborus niger) after sowing. Sci Hortic 107:292–296

    Article  Google Scholar 

  • Nikolaeva MG (1977) Factors controlling the seed dormancy pattern. In: Khan AA (ed) The physiology and biochemistry of seed dormancy and germination. North-Holland, Amsterdam, pp 51–74

    Google Scholar 

  • Nold R (2003) Columbines: Aquilegia, Paraquilegia and Semiaguilegia. Timber Press, Portland

    Google Scholar 

  • Nonogaki H (2019) Seed germination and dormancy: the classic story, new puzzles, and evolution. J Integr Plant Biol 61:541–563

    Article  PubMed  Google Scholar 

  • Ooi MK (2012) Seed bank persistence and climate change. Seed Sci Res 22:S53–S60

    Article  Google Scholar 

  • Porceddu M, Mattana E, Pritchard HW, Bacchetta G (2017) Dissecting seed dormancy and germination in Aquilegia barbaricina, through thermal kinetics of embryo growth. Plant Biol 19:983–993

    Article  CAS  PubMed  Google Scholar 

  • Vandelook F, Bolle N, Van Assche JA (2007) Multiple environmental signals required for embryo growth and germination of seeds of Selinum carvifolia (L.) L. and Angelica sylvestris L. (Apiaceae). Seed Sci Res 17:283–291

    Article  Google Scholar 

  • Vandelook F, Bolle N, Van Assche JA (2008) Seasonal dormancy cycles in the biennial Torilis japonica (Apiaceae), a species with morphophysiological dormancy. Seed Sci Res 18:161–171

    Article  Google Scholar 

  • Vandelook F, Lenaerts J, Jozef AVA (2009) The role of temperature in post-dispersal embryo growth and dormancy break in seeds of Aconitum lycoctonum L. Flora 204:536–542

    Article  Google Scholar 

  • Walck JL, Baskin CC, Baskin JM (2000) Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Can J Bot 77:1769–1776

    Article  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, KEN T, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Chang Biol 17:2145–2161

    Article  Google Scholar 

  • Zhang K, Zhang Y, Walck JL, Jun T (2019) Non-deep simple morphophysiological dormancy in seeds of Angelica keiskei (Apiaceae). Sci Hortic 255:202–208

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31800340), the Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement of China (Grant No. 2017023), the Jiangsu Agricultural Science and Technology Innovation Foundation of China [Grant No. CX(19)3124], and the Jiangsu Forestry Science and Technology Innovation and Promotion Project of China (Grant No. LYKJ[2018]41).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Tao or Jeffrey L. Walck.

Ethics declarations

Conflict of interest

none.

Additional information

Responsible Editor: Wen-Hao Zhang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. 7

Longitudinal sections of Aquilegia oxysepala seeds buried in soil at a depth of 2 cm in 2018–2019. Fresh seeds having rudimentary embryos (a), and growing embryos when seeds exhumed on 24 January 2019 (b), 12 February 2019 (c), and 21 February 2019 (d). Em, embryo; En, endosperm; SC, seed coat

ESM 1

(TIF 2.56 mb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Ji, Y., Fu, G. et al. Dormancy cycles in Aquilegia oxysepala Trautv. et Mey. (Ranunculaceae), a species with non-deep simple morphophysiological dormancy. Plant Soil 464, 223–235 (2021). https://doi.org/10.1007/s11104-021-04951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04951-8

Keywords

Navigation