Skip to main content

Advertisement

Log in

Overgrazing causes a reduction in the vegetation cover and seed bank of Patagonian grasslands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

Soil and vegetation degradation are among the most serious consequences of overgrazed grasslands. Changes in vegetation may affect soil seed bank size and composition. We evaluated the contribution of the seed bank to recovery of the degraded grasslands.

Methods

The vegetation and seed bank of a degraded grassland and in a good condition grassland of Patagonia were sampled for analysis of species richness and composition, vegetation cover, and seed density, focusing in all cases on functional groups. We also studied the influence of seasonal weather conditions (precipitation and temperature) on the vegetation and seed bank of the degraded grassland over 2 years.

Results

Vegetation cover and seed bank size were notably lower in the degraded grassland. Perennial grasses had been replaced by shrubs in the vegetation. Annual herb seed density was higher in the grassland in good condition than in the degraded grassland. Pappostipa speciosa were the only perennial grass seeds present in the seed banks of both grasslands. Species composition similarity of the seed banks of the two grasslands was high. Differences between years in the richness, vegetation cover and seed bank size of functional groups in the degraded grassland were related to weather conditions.

Conclusions

Recovery of the matrix species can improve the entire system through regeneration of microsites and an increase in soil fertility. To reduce overgrazing and halt soil degradation we suggest a decrease in the livestock stocking rate, allowing recovery of the vegetation from the soil seed bank, which represents a legacy from the previous vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Aput L, Farji-Brener A, Pirk G (2019) Effects of introduced plants on diet and seed preferences of Pogonomyrmex carbonarius (Hymenoptera: Formicidae) in the Patagonian steppe. Environ Ent 20:1–6

    Google Scholar 

  • Bartoli A, Tortosa R, Ratto F, Schiavinato D (2012) Notas taxónomicas en Asteraceae. Bol Soc Argent Bot 47:145–148

    Google Scholar 

  • Bell LW, Kirkegaard JA, Swan A, Hunt JR, Huth NI, Fettell NA (2011) Impacts of soil damage by grazing livestock on crop productivity. Soil Tillage Res 113:19–29

    Article  Google Scholar 

  • Bertiller MB (1992) Seasonal variation in the seed bank of a Patagonian grassland in relation to grazing and topography. J Veg Sci 3:47–54

    Article  Google Scholar 

  • Bertiller MB, Beeskow AM, Coronato F (1991) Seasonal environmental variation and plant phenology in arid Patagonia (Argentina). J Arid Environ 21:1–11

    Article  Google Scholar 

  • Bertiller MB, Bisigato A (1998) Vegetation dynamics under grazing disturbance . The state-and- transition model for the Patagonian steppes. Ecol Austral 8:191–199

    Google Scholar 

  • Bertiller MB, Carrera AL (2015) Aboveground vegetation and perennial grass seed bank in arid rangelands disturbed by grazing. Rangel Ecol Manag 68:71–78

    Article  Google Scholar 

  • Bertiller MB, Coronato F (1994) Seed bank patterns of Festuca pallescens in semiarid Patagonia (Argentina): a possible limit to bunch reestablishment. Biodivers Conserv 3:57–67

    Article  Google Scholar 

  • Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653

    Article  Google Scholar 

  • Bisigato AJ, Bertiller MB (2004) Seedling recruitment of perennial grasses in degraded areas of the Patagonian Monte. J Range Manag 57:191–196

    Article  Google Scholar 

  • Bossuyt B, Honnay O (2008) Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J Veg Sci 19:875–884

    Article  Google Scholar 

  • Bran D, Siffredi G, Ayesa J et al (2006) Evaluación del estado de los recursos forrajeros de la Estancia San Ramón. Comunicación técnica # 106, Área recursos naturales, INTA EEA, Argentina

    Google Scholar 

  • Caballero I, Olano JM, Loidi J, Escudero A (2003) Seed bank structure along a semi-arid gypsum gradient in Central Spain. J Arid Environ 55:287–299

    Article  Google Scholar 

  • Chartier M, Rostagno C (2006) Soil erosion thresholds and alternative states in northeastern Patagonian rangelands. Rangeland Ecol Manage 59:616–624

    Article  Google Scholar 

  • Clarke K (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–243

    Article  Google Scholar 

  • Coronato F, Fasioli E, Schweitzer A et al (2015) Rethinking the role of sheep in the local development of Patagonia, Argentina. Rev Elev Med Vet Pays Trop 68:129–133

    Article  Google Scholar 

  • Couso L, Fernández R (2012) Phenotypic plasticity as an index of drought tolerance in three Patagonian steppe grasses. Ann Bot 110:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defossé GE, Robberecht R, Bertiller MB (1997) Seedling dynamics of Festuca spp. in a grassland of Patagonia, Argentina, as affected by competition, microsites, and grazing. J Range Manag 50:73–79

    Article  Google Scholar 

  • del Valle H, Elissalde N, Gagliardini D et al (1998) Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid Soil Res and Rehabil 12:95–122

    Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  • Fariña C, Easdale M, Umaña F, Bruzzone O, Siffredi G, Ayesa J (2019) Estancia San Ramón: Evaluación forrajera y dinámica de la productividad de cuadros. Comunicación técnica # 46, Área recursos naturales, INTA EEA, Argentina

    Google Scholar 

  • Fernández RJ, Paruelo JM (1988) Root systems of two Patagonian shrubs: a quantitative description using a geometrical method. J Rangeland Manag 4:220–223

    Google Scholar 

  • Franzese J, Ghermandi L, Gonzalez SL (2016) Historical land use by domestic grazing revealed by the soil seed bank: a case study from a natural semi-arid grassland of NW Patagonia. Grass Forage Sci 71:315–327

    Article  Google Scholar 

  • Funes G, Basconcelo S, Díaz S, Cabido M (2001) Edaphic patchiness influences grassland regeneration from the soil seed-bank in mountain grasslands of Central Argentina. Austral Ecol 26:205–212

    Article  Google Scholar 

  • Gaitán J, López C, Ayesa J et al (2004) Características y distribución especial de los paisajes y los suelos del área Bariloche-Comallo. Área de Investigación en Recursos Naturales, INTA EEA, Argentina

    Google Scholar 

  • Ganjurjav H, Zhang Y, Gornish ES, Hu G, Li Y, Wan Y, Gao Q (2019) Differential resistance and resilience of functional groups to livestock grazing maintain ecosystem stability in an alpine steppe on the Qinghai-Tibetan plateau. J Environ Manag 251:109579

    Article  Google Scholar 

  • García-Fayos P, Bochet E, Cerdà A (2010) Seed removal susceptibility through soil erosion shapes vegetation composition. Plant Soil 334:289–297

    Article  Google Scholar 

  • García-Fayos P, Cerdà A (1997) Seed losses by surface wash in degraded Mediterranean environments. Catena 29:73–83

    Article  Google Scholar 

  • Geist H, Lambin E (2004) Dynamic causal patterns of desertification. Biosciencia 54:817–829

    Article  Google Scholar 

  • Ghermandi L (1995a) Dinámica del banco de semillas en un pastizal de Stipa speciosa del noroeste de la Patagonia. PHD Thesis, Argentina

    Google Scholar 

  • Ghermandi L (1995b) The effect of the awn on the burial and germination of Stipa speciosa (Poaceae). Acta Oecol 16:719–728

    Google Scholar 

  • Ghermandi L (1997) Seasonal patterns in the seed bank of a grassland in North-Western Patagonia. J Arid Environ 35:215–224

    Article  Google Scholar 

  • Ghermandi L, Gonzalez S (2009) Diversity and functional groups dynamics affected by drought and fire in patagonian grasslands. Ecoscience 16:408–417

    Article  Google Scholar 

  • Ghermandi L, Gonzalez S, Franzese J, Oddi F (2015) Effects of volcanic ash deposition on the early recovery of gap vegetation in northwestern Patagonian steppes. J Arid Environ 122:154–160

    Article  Google Scholar 

  • Ghermandi L, Guthmann N, Bran D (2004) Early post-fire succession in northwestern Patagonia grasslands. J Veg Sci 15:67–76

    Article  Google Scholar 

  • Golluscio RA, Sala OE, Lauenroth WK (1998) Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115:17–25

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez S, Ghermandi L (2008) Postfire seed bank dynamics in semiarid grasslands. Plant Ecol 199:175–185

    Article  Google Scholar 

  • Gonzalez SL, Ghermandi L (2019) Dwarf shrub facilitates seedling recruitment and plant diversity in semiarid grasslands. PLoS One 14(2):e0212058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez JR, Meserve PL (2003) El Niño effects on soil seed bank dynamics in north-Central Chile. Oecologia 134:511–517

    Article  PubMed  Google Scholar 

  • Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG (2016) Changing disturbance regimes, ecological memory, and forest resilience. Frontiers Ecol Environ 14:369–378

    Article  Google Scholar 

  • Kalamees R, Pussa K, Zobel K et al (2012) Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Appl Veg Sci 15:208–218

    Article  Google Scholar 

  • Keesstra S, Boumal J, Wallinga J et al (2016) The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2:111–128

    Article  Google Scholar 

  • Kinloch J, Friedel M (2005) Soil seed reserves in arid grazing lands of Central Australia.Part 2: availability of ‘safe sites’. J Arid Environ 60:163–185

    Article  Google Scholar 

  • Levin D (1990) The seed bank as a source of genetic novelty in plants. Am Nat 135:563–572

    Article  Google Scholar 

  • Lezama F, Paruelo JM (2016) Disentangling grazing effects: trampling, defoliation and urine deposition. Appl Veg Sci 19:557–566

    Article  Google Scholar 

  • Ma M, Dalling JW, Ma Z, Zhou X (2017) Soil environmental factors drive seed density across vegetation types on the Tibetan plateau. Plant Soil 419:349–361

    Article  CAS  Google Scholar 

  • Ma M, Zhou X, Du G (2010) Role of soil seed bank along a disturbance gradient in an alpine meadow on the Tibet plateau. Flora Morphol Distrib Funct Ecol Plants 205:128–134

    Article  Google Scholar 

  • Meteorological Station Bariloche Aerodrome (2021) https://www.tutiempo.net/bariloche-aerodrome.html. Accessed 15 Feb 2021

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, Chichester

    Google Scholar 

  • Nikman P, Erfanzadeh R, Ghelichnia H et al (2018) Spatial variation of soil seed bank under cushion plants in a subalpine degraded grassland. Land Degrad Dev 29:4–14

    Article  Google Scholar 

  • Oñatibia G, Aguiar M, Semmartin M (2015) Are there any trade-offs between forage provision and the ecosystem service of C and N storage in arid rangelands? Ecol Eng 77:26–32

    Article  Google Scholar 

  • Paruelo J, Aguiar M (2003) Impacto humano sobre los ecosistemas: El caso de la desertificación. Ciencia Hoy 77:48–59

    Google Scholar 

  • Paruelo JM, Jobbagy E, Oesterheld M et al (2007) The grasslands and steppes of Patagonia and the Río de la Plata plains. In: Veblen TT, Young KR, Ome AR (eds) Physical geography of South America. Oxford University Press, New York, pp 232–248

    Google Scholar 

  • Pazos GE, Bertiller MB (2008) Spatial patterns of the germinable soil seed bank of coexisting perennial-grass species in grazed shrublands of the Patagonian Monte. Plant Ecol 198:111–120

    Article  Google Scholar 

  • Peart MH (1984) The effects of morphology, orientation and position of grass diaspores on seedling survival. J Ecol 72:437–453

    Article  Google Scholar 

  • Prach K, Hobbs RJ (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor Ecol 16:363–366

    Article  Google Scholar 

  • Rostagno CM, del Valle HF (1988) Mounds associated with shrubs in aridic soils of northeastern Patagonia: characteristics and probable genesis. Catena 15:347–359

    Article  Google Scholar 

  • Saravi MM, Chaichi MR, Attaeian B (2005) Effects of soil compaction by animal trampling on growth characteristics of Agropyrum repens (case study: Lar rangeland, Iran). Int J Agric Biol 7:909–914

    Google Scholar 

  • Schöning C, Espadaler X, Hensen I, Roces F (2004) Seed predation of the tussock-grass Stipa tenacissima L. by ants (Messor spp.) in southeastern Spain: the adaptive value of trypanocarpy. J Arid Environ 56:43–61

    Article  Google Scholar 

  • Shang Z, Yang S, Wang Y, Shi J, Ding L, Long R (2016) Soil seed bank and its relation with above-ground vegetation along the degraded gradients of alpine meadow. Ecol Eng 90:268–277

    Article  Google Scholar 

  • Thompson A, Jones N, Blair A (1997) The effect of temperature on viability of imbibed weed seeds. Annals Appl Biol 130:123–134

    Article  Google Scholar 

  • Thompson K, Band S, Hodgson J (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241

    Article  Google Scholar 

  • Thompson K, Grime J (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J Ecol 67:893–921

    Article  Google Scholar 

  • Török P, Kelemen A, Valkó O et al (2018) Succession in soil seed banks and its implications for restoration of calcareous sand grasslands. Restor Ecol 26:134–140

    Article  Google Scholar 

  • Traba J, Azcárate FM, Peco B (2004) From what depth do seeds emerge? A soil seed bank experiment with Mediterranean grassland species. Seed Sci Res 14:297–303

    Article  Google Scholar 

  • UN (2021) https://www.decadeonrestoration.org/. Accessed 11 Jan 2021

  • Valkó O, Török P, Tóthmerész B et al (2011) Restoration potential in seed banks of acidic fen and dry-Mesophilous meadows: can restoration be based on local seed banks? Restor Ecol 101:9–15

    Article  Google Scholar 

  • Vandvik V, Klanderud K, Mineri E et al (2016) Seed banks are biodiversity reservoirs: species–area relationships above versus below ground. Oikos 125:218–228

    Article  Google Scholar 

  • Velasco V, Siffredi G (2009) Guía para el reconocimiento de especies de los pastizales de sierras y mesetas occidentales de Patagonia. Ediciones INTA, Argentina

    Google Scholar 

  • Venable DL, Pake CE, Caprio AC (1993) Diversity and coexistence of Sonoran desert winter annuals. Plant Spec Biol 8:207–216

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Pablo Alvear and Ariel Mayoral for their fieldwork assistance. The managers John Belcher and Leandro Ballerini permitted the monitoring realization. Comments from Dr. Guillermo Defossé were helpful in improving the manuscript and were greatly appreciated. The work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (Project PICT 2015 - 0375).

Funding

This study was supported by the Agencia Nacional de Promoción Cíentifica y Tecnológica. Project code: PICT 2015–3275.

Author information

Authors and Affiliations

Authors

Contributions

SG: Conceptualization, Methodology, Field Data collection, Formal analysis, Writing-Original Draft, Writing-Review & Editing, Visualization. LG: Conceptualization, Methodology, Writing-Original Draft, Writing-Review & Editing, Funding acquisition. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Sofía Laura Gonzalez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

All authors consent to participate.

Consent for publication

All authors consent for publication.

Additional information

Responsible Editor: Jeffrey Walck.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, S.L., Ghermandi, L. Overgrazing causes a reduction in the vegetation cover and seed bank of Patagonian grasslands. Plant Soil 464, 75–87 (2021). https://doi.org/10.1007/s11104-021-04931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04931-y

Keywords

Navigation