Skip to main content
Log in

Fine root dynamics and partitioning of root respiration into growth and maintenance components in cool temperate deciduous and evergreen forests

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We aim to show the seasonality of fine root dynamics and examine the relationship between root respiration (Rr) and fine root dynamics. In addition, we try partitioning Rr into growth (Rg) and maintenance (Rm) components.

Methods

Soil respiration (Rs), fine root biomass (B), and fine root production (P) were measured simultaneously over a growing season in adjoining deciduous (DF) and evergreen (EF) forests. The Rr was separated from Rs by the trenching method, and Rr was partitioned into Rg and Rm using an empirical model.

Results

The seasonality of P was almost the same in both forests, though that of B was different. The Rr showed a positive correlation with P in both sites. Annual Rr was estimated to be 610 (DF) and 393 (EF) g C m−2 year−1. Annual Rg and Rm were 121 and 166 (DF), and 86 and 182 (EF) g C m−2 year−1, respectively.

Conclusions

We found a clear seasonal pattern in P and a positive linearity between Rr and P. Despite considerable uncertainty due to the small sample size, presence of larger roots, and measurement uncertainty, the results suggest that our approach is capable of partitioning Rr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramoff RZ, Finzi AC (2015) Are above- and below-ground phenology in sync? New Phytol 205:1054–1061. https://doi.org/10.1111/nph.13111

    Article  PubMed  Google Scholar 

  • Abramoff RZ, Finzi A (2016) Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest. Ecosphere 7:1–19. e01547. https://doi.org/10.1002/ecs2.1547

    Article  Google Scholar 

  • Addo-Danso SD, Prescott CE, Smith AR (2016) Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: a review. Forest Ecol Manag 359:332–351. https://doi.org/10.1016/j.foreco.2015.08.015

    Article  Google Scholar 

  • Amthor JS (2000) The McCree-de wit-Penning deVries-Thornly respiration paradigms: 30 years later. Ann Bot-London 86:1–20

    Article  CAS  Google Scholar 

  • Bonan G (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y (2009) Influence of environmental variability on root dynamics in northern forests. Crit Rev Plant Sci 28:179–197. https://doi.org/10.1080/07352680902776572

    Article  Google Scholar 

  • Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konôpka B, López BC, Miguel Pérez C, Persson H, Ostonen I (2013) Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372. https://doi.org/10.1007/s11104-012-1313-5

    Article  CAS  Google Scholar 

  • Chapin FS III, Matson PA, Vitousek PM (2011) Plant respiration. Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Coleman MD, Dickson RE, Isebrands JG (2000) Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations. Plant Soil 225:129–139

    Article  CAS  Google Scholar 

  • Davidson EA, Richardson AD, Savage KE, Hollinger D (2006) A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Glob Chang Biol 12:230–239. https://doi.org/10.1111/j.1365-2486.2005.01062.x

    Article  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot PM (1999) Soil CO2 efflux in a beech forest: the contribution of root respiataion. Ann For Sci 56:289–295

    Article  Google Scholar 

  • Fernandez CW, Kennedy PG (2016) Revisiting the 'Gadgil effect': do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394. https://doi.org/10.1111/nph.13648

    Article  CAS  PubMed  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011a) Factors causing variation in fine root biomass in forest ecosystems. Forest Ecol Manag 261:265–277. https://doi.org/10.1016/j.foreco.2010.10.016

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011b) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecol Manag 262:2008–2023. https://doi.org/10.1016/j.foreco.2011.08.042

    Article  Google Scholar 

  • Fukuzawa K, Shibata H, Takagi K, Satoh F, Koike T, Sasa K (2013) Temporal variation in fine-root biomass, production and mortality in a cool temperate forest covered with dense understory vegetation in northern Japan. Forest Ecol Manag 310:700–710. https://doi.org/10.1016/j.foreco.2013.09.015

    Article  Google Scholar 

  • George K, Norby RJ, Hamilton JG, DeLucia EH (2003) Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytol 160:511–522. https://doi.org/10.1046/j.1469-8137.2003.00911.x

    Article  PubMed  Google Scholar 

  • Gholz HL, Wein DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Gifford RM (2003) Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171. https://doi.org/10.1071/fp02083

    Article  PubMed  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separation root and soil microbial contributions to soil respiration: a review of mehotds and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. https://doi.org/10.1111/j.1365-2745.2005.01067.x

    Article  Google Scholar 

  • Hirano T, Hirata R, Fujinuma Y, Saigusa N, Yamamoto S, Harazono Y, Takada M, Inukai K, Inoue G (2003a) CO2 and water vapor exchange of a larch forest in northern Japan. Tellus B 55:244–257. https://doi.org/10.1034/j.1600-0889.2003.00063.x

    Article  Google Scholar 

  • Hirano T, Kim H, Tanaka Y (2003b) Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. J Geophys Res-Atmos 108. https://doi.org/10.1029/2003JD003766

  • Hirano T, Suzuki K, Hirata R (2017) Energy balance and evapotranspiration changes in a larch forest caused by severe disturbance during an early secondary succession. Agric For Meteorol 232:457–468. https://doi.org/10.1016/j.agrformet.2016.10.003

    Article  Google Scholar 

  • Hirata R, Hirano T, Saigusa N, Fujinuma Y, Inukai K, Kitamori Y, Takahashi Y, Yamamoto S (2007) Seasonal and interannual variations in carbon dioxide exchange of a temperate larch forest. Agric For Meteorol 147:110–124. https://doi.org/10.1016/j.agrformet.2007.07.005

    Article  Google Scholar 

  • Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang J, Subke J-A (2013) Ecosystem-level controls on root-rhizosphere respiration. New Phytol 199:339–351. https://doi.org/10.1111/nph.12271

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson GL, Livingston GP (2001) Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. Eur J Soil Sci 52:675–682

    Article  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Chang Biol 7:269–278

    Article  Google Scholar 

  • Johnson IR (1990) Plant respiration in relation to growth, maintenance, ion uptake and nitrogen assimilation. Plant Cell Environ 13:319–328

    Article  Google Scholar 

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global Forest resources assessment 2015. Forest Ecol Manag 352:9–20. https://doi.org/10.1016/j.foreco.2015.06.014

    Article  Google Scholar 

  • Lambers H, Chapin III FS, Pons TL (2008) The role of respiration in plant carbon balance. Plant Physiological Ecology. 2nd edn. Springer, New York

    Chapter  Google Scholar 

  • Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG, Arneth A, Arora VK, Barbero L, Bastos A, Bopp L, Chevallier F, Chini LP, Ciais P, Doney SC, Gkritzalis T, Goll DS, Harris I, Haverd V, Hoffman FM, Hoppema M, Houghton RA, Hurtt G, Ilyina T, Jain AK, Johannessen T, Jones CD, Kato E, Keeling RF, Goldewijk KK, Landschützer P, Lefèvre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro DR, Nabel JEMS, S-i N, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rödenbeck C, Schuster U, Schwinger J, Séférian R, Skjelvan I, Steinhoff T, Sutton A, Tans PP, Tian H, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Wright R, Zaehle S, Zheng B (2018) Global carbon budget 2018. Earth Syst Sci Data 10:2141–2194. https://doi.org/10.5194/essd-10-2141-2018

    Article  Google Scholar 

  • Liang N, Hirano T, Zheng ZM, Tang J, Fujinuma Y (2010) Soil CO2 efflux of a larch forest in northern Japan. Biogeosciences 7:3447–3457. https://doi.org/10.5194/bg-7-3447-2010

    Article  CAS  Google Scholar 

  • Liu S, Luo D, Yang H, Shi Z, Liu Q, Zhang L, Kang Y (2018) Fine root dynamics in three Forest types with different origins in a subalpine region of the eastern Qinghai-Tibetan plateau. Forests 9:517. https://doi.org/10.3390/f9090517

    Article  Google Scholar 

  • Majdi H, Pregitzer K, Morén A-S, Nylund J-E, Ågren IG (2005) Measuring fine root turnover in Forest ecosystems. Plant Soil 276:1–8. https://doi.org/10.1007/s11104-005-3104-8

    Article  CAS  Google Scholar 

  • Makkonen K, Helmisaari HS (1998) Seasonal and yearly variations of fine-root biomass and necromass in a scots pine (Pinus sylvestris L.) stand. Forest Ecol Manag 102:283–290

    Article  Google Scholar 

  • McCormack ML, Adams TS, Smithwick AH, Eissenstat DM (2014) Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95:2224–2235

    Article  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppalammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518. https://doi.org/10.1111/nph.13363

    Article  PubMed  Google Scholar 

  • McCree KJ (1974) Equations for the rate of dark respiration of white clove and grain sorghum, as functions of dry weight, photosynthetic rate, and temperature. Crop Sci 14:509–514

    Article  Google Scholar 

  • Mizoguchi Y, Ohtani Y, Takanashi S, Iwata H, Yasuda Y, Nakai Y (2012) Seasonal and interannual variation in net ecosystem production of an evergreen needleleaf forest in Japan. J Forest Res-Jpn 17:283–295. https://doi.org/10.1007/s10310-011-0307-0

    Article  CAS  Google Scholar 

  • Moyano F, Atkin OK, Bahn M, Bruhn D, Burton AJ, Heinemeyer A, Kutsch W, Wieser G (2009) Respiration from roots and the mychorrhizosphere. In: Kutsch W, Bahn M, Heinemeyer A (eds) Soil carbon dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Noguchi K, Sakata T, Mizoguchi T, Takahashi M (2005) Estimating the production and mortality of fine roots in a Japanese cedar (Cryptomeria japonica D. Don) plantation using a minirhizotron technique. J Forest Res-Jpn 10:435–441. https://doi.org/10.1007/s10310-005-0163-x

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world's forests. Science 333:988–993. https://doi.org/10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  • Penning de Vries FWT (1974) Substrate utilization and respiration in relation to growth and maintenance in higher plants. Neth J Agric Sci 22:40–44

    Google Scholar 

  • Radville L, McCormack ML, Post E, Eissenstat DM (2016) Root phenology in a changing climate. J Exp Bot 67:3617–3628. https://doi.org/10.1093/jxb/erw062

    Article  CAS  PubMed  Google Scholar 

  • Ravindranath NH, Ostwald M (2008) Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and Roundwood production. Springer, Projects

    Book  Google Scholar 

  • Reichstein M, Janssens IA (2009) Semi-empirical modeling of the response of soil respiration to environmental factors in laboratory and field conditions. In: Kutsch W, Bahn M, Heinemeyer A (eds) Soil carbon dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58

    Article  CAS  Google Scholar 

  • Sakai Y, Takahashi M, Tanaka N (2007) Root biomass and distribution of a Picea—Abies stand and a Larix—Betula stand in pumiceous Entisols in Japan. J Forest Res-Jpn 12:120–125. https://doi.org/10.1007/s10310-006-0270-3

    Article  Google Scholar 

  • Sano T, Hirano T, Liang N, Hirata R, Fujinuma Y (2010) Carbon dioxide exchange of a larch forest after a typhoon disturbance. Forest Ecol Manag 260:2214–2223. https://doi.org/10.1016/j.foreco.2010.09.026

    Article  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. https://doi.org/10.1007/s004420100740

    Article  PubMed  Google Scholar 

  • Steinaker DF, Wilson SD, Peltzer DA (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Glob Chang Biol 16:2241–2251. https://doi.org/10.1111/j.1365-2486.2009.02065.x

    Article  Google Scholar 

  • Subke J-A, Inglima I, Francesca Cotrufo M (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Chang Biol 12:921–943. https://doi.org/10.1111/j.1365-2486.2006.01117.x

    Article  Google Scholar 

  • Sun LF, Teramoto M, Liang N, Yazaki T, Hirano T (2017) Comparison of litter-bag and chamber methods for measuring CO2 emissions from leaf litter decomposition in a temperate forest. J Agric Meteorol 73:59–67. https://doi.org/10.2480/agrmet.D-16-00012

    Article  Google Scholar 

  • Sweetlove LJ, Williams TC, Cheung CY, Ratcliffe RG (2013) Modelling metabolic CO(2) evolution--a fresh perspective on respiration. Plant Cell Environ 36:1631–1640. https://doi.org/10.1111/pce.12105

    Article  CAS  PubMed  Google Scholar 

  • Teramoto M, Liang N, Zeng J, Saigusa N, Takahashi Y (2017) Long-term chamber measurements reveal strong impacts of soil temperature on seasonal and inter-annual variation in understory CO 2 fluxes in a Japanese larch ( Larix kaempferi Sarg.) forest. Agric For Meteorol 247:194–206. https://doi.org/10.1016/j.agrformet.2017.07.024

    Article  Google Scholar 

  • Thongo M’Bou A, Saint-André L, de Grandcourt A, Nouvellon Y, Jourdan C, Mialoundama F, Epron D (2010) Growth and maintenance respiration of roots of clonal Eucalyptus cuttings: scaling to stand-level. Plant Soil 332:41–53. https://doi.org/10.1007/s11104-009-0272-y

    Article  CAS  Google Scholar 

  • Thornley JHM (1970) Respiration, growth and maintenance in plants. Nature 227:304–305

    Article  CAS  PubMed  Google Scholar 

  • Thornton PE, Rosenbloom NA (2005) Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Model 189:25–48. https://doi.org/10.1016/j.ecolmodel.2005.04.008

    Article  CAS  Google Scholar 

  • Tierney G, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT, Yavitt JB (2003) Environmental control of fine root dynamics in a northern hardwood forest. Glob Chang Biol 9:670–679

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  • Wang W, Zu Y, Wang H, Hirano T, Takagi K, Sasa K, Koike T (2005) Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system. J Forest Res-Jpn 10:57–60. https://doi.org/10.1007/s10310-004-0102-2

    Article  Google Scholar 

  • Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD (2015) Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations. New Phytol 205:59–78. https://doi.org/10.1111/nph.13034

    Article  PubMed  Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

  • Yazaki T, Hirano T, Sano T (2016) Biomass accumulation and net primary production during the early stage of secondary succession after a severe Forest disturbance in northern Japan. Forests 7. https://doi.org/10.3390/f7110287

    Article  Google Scholar 

  • Yuan ZY, Chen H (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal Forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204–221. https://doi.org/10.1080/07352689.2010.483579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI (nos. 25241002 and 17 K20037) and the Environment Research and Technology Development Fund (2-1705) of the Environmental Restoration and Conservation Agency. We thank the Hokkaido Regional Office of the Forestry Agency for allowing us to use the study site, and N. Saigusa, R. Hirata and the staff of CGER for managing the site, and K. Fukuzawa and K. Takagi for teaching us how to measure fine roots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hirano.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Hirano, T., Yazaki, T. et al. Fine root dynamics and partitioning of root respiration into growth and maintenance components in cool temperate deciduous and evergreen forests. Plant Soil 446, 471–486 (2020). https://doi.org/10.1007/s11104-019-04343-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04343-z

Keywords

Navigation