Skip to main content
Log in

Hemicellulose modification promotes cadmium hyperaccumulation by decreasing its retention on roots in Sedum alfredii

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

As a vital polysaccharide related to mechanisms of plant resistance to trace metal in the root cell wall, the role of hemicellulose in cadmium (Cd) accumulation in hyperaccumulators is still unknown. We investigated hemicellulose modification in response to Cd in two populations of Sedum alfredii.

Methods

Nonhyperaccumulating population (NHP) and hyperaccumulating population (HP) of S. alfredii were grown in nutrient solutions with or without 25 μM Cd for 15 d. Monosaccharide composition of root cell wall hemicellulose and its remolding mechanisms (e.g. enzyme activity and gene expression) were analyzed by using gas chromatography-mass spectrometer (GC-MS), fourier transform infrared spectrometer (FTIR), nuclear magnetic resonance (NMR) and quantitative real-time PCR techniques.

Results

In 25 μM Cd treatment, root cell wall hemicellulose in the NHP significantly (P < 0.05) increased and its hemicellulose-bound Cd was nearly 2.5-fold higher than that of HP. In the presence of Cd, xylose and glucose, proved to be the main component of hemicellulose, were higher in the NHP than in the HP owing to the up-regulation of XET/XEH and encoding gene (XTH 31). 113Cd-NMR and FTIR results indicated that hemicellulose with hydroxyl and carboxyl groups of HP retained less Cd than that of NHP.

Conclusion

Hemicellulose modification decreased the Cd-binding capacity of the root cell wall and increased the entry of Cd in the shoot of HP S. alfredii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Avci U, Pattathil S, Hahn MG (2012) Immunological approaches to plant cell wall and biomass characterization: immunolocalization of glycan epitopes. Methods Mol Biol 908:73–82

    PubMed  CAS  Google Scholar 

  • Baumann MJ, Eklöf JM, Michel G, Kallas AM, Teeri TT, Czjzek M, Brumer H (2007) Structural evidence for the evolution of Xyloglucanase activity from Xyloglucan Endo-Transglycosylases: biological implications for Cell Wall metabolism. Plant Cell 19:1947–1963

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489

    PubMed  CAS  Google Scholar 

  • Broadley MR, Willey NJ, Wilkins JC, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27

    CAS  Google Scholar 

  • Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6(10):724–732

    PubMed  CAS  Google Scholar 

  • Carrier P, Baryla A, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216:939–950

    PubMed  CAS  Google Scholar 

  • Chang YC, Yamamoto Y, Matsumoto H (1999) Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant Cell Environ 22:1009–1017

    CAS  Google Scholar 

  • Chao YE, Feng Y, Yang XE, Liu D (2008) Effect of long-term stress of high Pb/Zn levels on genomic variation of Sedum alfredii Hance. Bull Environ Contam Toxicol 81:445–448

    PubMed  CAS  Google Scholar 

  • Cheng L, Wang L, Wei L, Wu Y, Alam A, Xu C, Wang Y, Tu Y, Peng L, Xia T (2019) Combined mild chemical pretreatments for complete cadmium release and cellulosic ethanol co-production distinctive in wheat mutant straw. Green Chem 21:3693–3700

    CAS  Google Scholar 

  • Chen X, Kim J (2009) Callose synthesis in higher plants. Plant Signaling Behavior 4:489–492

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chudzik B, Szczuka E, Leszczuk A, Strubińska J (2018) Modification of pectin distribution in sunflower (Helianthus annuus L.) roots in response to lead exposure. Environ Exp Bot 155:251–259

    CAS  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    PubMed  CAS  Google Scholar 

  • Colzi I, Arnetoli M, Gallo A, Doumett S, Del Bubba M, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot 78:91–98

    CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Bio 6:850–861

    CAS  Google Scholar 

  • Cui X, Fang S, Yao Y, Li T, Ni Q, Yang X, He Z (2016) Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci Total Environ 562:517–525

    PubMed  CAS  Google Scholar 

  • Davis TA, Llanes F, Volesky B, Mucci A (2003) Metal selectivity of Sargassum spp. and their alginates in relation to their α-l-guluronic acid content and conformation. Environ Sci Technol 37:261–267

    PubMed  CAS  Google Scholar 

  • Deng J, Liao B, Mai Y, Deng D, Lan C, Shu W (2007) The effects of heavy metal pollution on genetic diversity in zinc/cadmium hyperaccumulator Sedum alfredii populations. Plant Soil 297:83–92

    CAS  Google Scholar 

  • Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C (2007) Cadmium-induced alterations of the structural features of pectins in flax hypocotyl. Planta 225:1301–1312

    PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282(3):821–828

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Sun L, Yang X, Liu J (2014) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS One 8:e64643

    PubMed  Google Scholar 

  • Günl M, Neumetzler L, Kraemer F, De Souza A, Schultink A, Pena M, York WS, Markus P (2011) Axy8 encodes an α-fucosidase, underscoring the importance of apoplastic metabolism on the fine structure of Arabidopsis cell wall polysaccharides. Plant Cell 23(11):4025–4040

    PubMed  PubMed Central  Google Scholar 

  • Han Y, Sa G, Sun J, Shen Z, Zhao R, Ding M, Deng S, Lu Y, Zhang Y, Shen X, Chen S (2014) Overexpression of Populus euphratica xyloglucan endotransglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. Environ Exp Bot 100:74–83

    CAS  Google Scholar 

  • Hématy K, Cherk C, Somerville S (2009) Host-pathogen warfare at the plant cell wall. Curr Opin Biotech 12:406–413

    Google Scholar 

  • Hossain A K M Z, Koyama H, Hara T (2006) Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol 163:39–47

  • Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant Cell Wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7:1–18

    Google Scholar 

  • Inoue H, Fukuoka D, Tatai Y, Kamachi H, Hayatsu M, Ono M, Suzuki S (2013) Properties of lead deposits in cell walls of radish (Raphanus sativus) roots. J Plant Res 126:51–61

    PubMed  CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Ann Rev Plant Biol 66:571–598

    CAS  Google Scholar 

  • Kollárová K, Kamenická V, Vatehová Z, Lišková D (2018) Impact of galactoglucomannan oligosaccharides and cd stress on maize root growth parameters, morphology, and structure. J Plant Physiol 222:59–66

    PubMed  Google Scholar 

  • Konno H, Nakashima S, Katoh K (2010) Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol 167:358–364

    PubMed  CAS  Google Scholar 

  • Krämer U (2010) “Metal hyperaccumulation in plants” Ann Rev Plant Biol 61(1):517–534

    PubMed  Google Scholar 

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51

    Google Scholar 

  • Krzesłowska M, Rabęda I, Basińska A, Lewandowski M, Mellerowicz EJ, Napieralska A, Samardakiewicz S, Woźny A (2016) Pectinous cell wall thickenings formation – a common defense strategy of plants to cope with Pb. Environ Pollut 214:354–361

    PubMed  Google Scholar 

  • Krzesłowska M, Timmers A.C.J, Mleczek M, Niedzielski P, Rabęda I, Woźny A, Goliński P, 2019. Alterations of root architecture and cell wall modifications in Tilia cordata miller (Linden) growing on mining sludge, Environ Pollut 248:247–259

    PubMed  Google Scholar 

  • Kučerová D, Kollárová K, Zelko I, Vatehová Z, Lišková D (2014) Galactoglucomannan oligosaccharides alleviate cadmium stress in Arabidopsis. J Plant Physiol 171:518–524

    PubMed  Google Scholar 

  • Lasat MM, Baker AJ, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118(3):875–883

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li F, Ren S, Zhang W, Xu Z, Xie G, Chen Y, Tu Y, Li Q, Zhou S, Li Y, Tu F, Liu L, Wang Y, Jiang J, Qin J, Li S, Li Q, Jing H, Zhou F, Gutterson N, Peng L (2013) Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresour Technol 130:629–637

    PubMed  CAS  Google Scholar 

  • Li JT, Gurajala HK, Wu L, Ent AVD, Qiu R, Baker AJM, Tang Y, Yang X, Shu W (2018) Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol 52:11980–11994

    PubMed  CAS  Google Scholar 

  • Li T, Tao Q, Shohag MJI, Yang X, Sparks DL, Liang Y (2015) Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil 389:387–399

    CAS  Google Scholar 

  • Li T, Yang X, Ma H, Lu L (2007) Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance. Journal of Zhejiang University B(biomedical and bioengineering edition) 8(2):111–115

    CAS  Google Scholar 

  • Liu T, Shen C, Wang Y, Huang C, Shi J (2014) New insights into regulation of proteome and polysaccharide in cell wall of Elsholtzia splendens in response to copper stress. PLoS One 9:e109573

    PubMed  PubMed Central  Google Scholar 

  • Lux A, Martinka M, Vaculik M, White PJ (2010) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    PubMed  Google Scholar 

  • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism of Al in Hydrangea (identification of Al form in the leaves). Plant Physiol 113(4):1033

    PubMed  PubMed Central  CAS  Google Scholar 

  • McCartha GL, Taylor CM, Ent AVD, Guillaume E, Gutiérrez DMN, Pollard AJ (2019) Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical Psychotria. American J Botany. https://doi.org/10.1002/ajb2.1362

    PubMed  CAS  Google Scholar 

  • Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonnelli C (2003) Evolutionary dynamics of nickel Hyperaccumulation in Alyssum revealed by ITS nrDNA analysis. New Phytol 159:691–699

    CAS  Google Scholar 

  • Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, Brumer H, Teeri TT, Stalbrand H, Mellerowicz EJ (2011) Xyloglucan endo-Transglycosylase-mediated Xyloglucan rearrangements in developing wood of hybrid Aspen. Plant Physiol 155:399–413

    PubMed  CAS  Google Scholar 

  • Nunan KJ, Sims IM, Bacic A, Fincher RGB (1998) Changes in cell wall composition during ripening of grape berries. Plant Physiol 118(3):783–792

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park YB, Cosgrove DJ (2015) Xyloglucan and its interactions with other components of the growing Cell Wall. Plant Cell Physiol 56:180–194

    PubMed  CAS  Google Scholar 

  • Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133

    PubMed  PubMed Central  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz E (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45–45

    Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal Hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    CAS  Google Scholar 

  • Rancour DM, Marita JM, Hatfield RD (2012) Cell wall composition throughout development for the model grass Brachypodium distachyon. Front Plant Sci 3:266

    PubMed  PubMed Central  Google Scholar 

  • Reimann C, Fabian K, Flem B (2019) Cadmium enrichment in topsoil: separating diffuse contamination from biosphere-circulation signals. Sci Total Environ 651:1344–1355

    PubMed  CAS  Google Scholar 

  • Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotech 26(7):100–107

    PubMed  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61(1):263–289

    PubMed  CAS  Google Scholar 

  • Schmohl N, Pilling J, Fisahn J, Horst WJ (2010) Pectin methylesterase modulates aluminium sensitivity in zea mays and solanum tuberosum. Physiol Plant 109(4):419–427

    Google Scholar 

  • Singh AP, Tripathi SK, Nath P, Sane AP (2011) Petal abscission in rose is associated with the differential expression of two ethylene-responsive xyloglucan endotransglucosylase/hydrolase genes, RbXTH1 and RbXTH2. J Exp Bot 62(14):5091–5103

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song L, Valliyodan B, Prince S, Wan J, Nguyen H (2018) Characterization of the XTH gene family: new insight to the roles in soybean flooding tolerance. Int J Mol Sci 19:2705

    PubMed Central  Google Scholar 

  • Sulová Z, Baran R, Farkaš V (2001) Release of complexed xyloglucan endotransglycosylase (XET) from plant cell walls by a transglycosylation reaction with xyloglucan-derived oligosaccharides. Plant Physiol Bioch 39:927–932

    Google Scholar 

  • Tucker M, Lou H, Aubert M, Wilkinson L, Little A, Houston K, Pinto S, Shirley N (2018) Exploring the role of Cell Wall-related genes and polysaccharides during plant development. Plants 7:42

    PubMed Central  CAS  Google Scholar 

  • Verbruggen N, Juraniec M, Baliardini C, Meyer C (2013) Tolerance to cadmium in plants: the special case of hyperaccumulators. Biometals 26:633–638

    PubMed  CAS  Google Scholar 

  • Wan J, Zhu X, Wang Y, Liu L, Zhang B, Li G, Zhou Y, Zheng S (2018) Xyloglucan Fucosylation modulates Arabidopsis Cell Wall hemicellulose Aluminium binding capacity. Sci Rep 8(1):428–439

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Su L, Yang J, Yuan J, Yin A, Qiu Q, Zhang K, Yang Z (2015) Comparisons of cadmium subcellular distribution and chemical forms between low-cd and high-cd accumulation genotypes of watercress (Nasturtium officinale L. R. Br.). Plant Soil 396:325–337

    CAS  Google Scholar 

  • Wu J, Mock H, Giehl RFH, Pitann B, Mühling KH (2019) Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. J Hazard Mater 364:581–590

    PubMed  CAS  Google Scholar 

  • Wu, L H, Luo, Y M, Liu, Y J, Guo, F G, Zhou and S B (2013) Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae): a new species from Zhejiang Province, China. Plant Syst Evol 299:487–498

    Google Scholar 

  • Xin J, Zhang Y, Tian R (2018) Tolerance mechanism of Triarrhena sacchariflora (maxim.) Nakai. Seedlings to lead and cadmium: translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Ecotox Environ Safe 165:611–621

    CAS  Google Scholar 

  • Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2925–2940

    PubMed  CAS  Google Scholar 

  • Xuan Y, Zhou ZS, Li HB, Yang ZM (2016) Identification of a group of XTHs genes responding to heavy metal mercury, salinity and drought stresses in Medicago truncatula. Ecotox Environ Safe 132:153–163

    CAS  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2007) Cell Wall polysaccharides are specifically involved in the exclusion of aluminum from the Rice root apex. Plant Physiol 146:602–611

    PubMed  Google Scholar 

  • Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011) Cell Wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    CAS  Google Scholar 

  • Zhang B, Zhang L, Li F, Zhang D, Liu X, Wang H, Xu Z, Chu C, Zhou Y (2017) Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nat Plants 3:17017

    PubMed  CAS  Google Scholar 

  • Zhong H, Lãuchli A (1993) Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J Exp Bot 44(261):773–778

    CAS  Google Scholar 

  • Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ (2012a) Cell wall polysaccharides are involved in P-deficiency-induced cd exclusion in Arabidopsis thaliana. Planta 236:989–997

    PubMed  CAS  Google Scholar 

  • Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH, Braam J, Jiang T, Xu XY, Mao CZ, Pan YJ, Yang JL, Wu P, Zheng SJ (2012b) XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, Cell Wall Xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell 24:4731–4747

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu XF, Wan JX, Wu Q, Zhao XS, Zheng SJ, Shen RF (2017) PARVUS affects aluminium sensitivity by modulating the structure of glucuronoxylan in Arabidopsis thaliana. Plant Cell Environ 40:1916–1925

    PubMed  CAS  Google Scholar 

  • Zhu XF, Wan JX, Sun Y, Shi YZ, Braam J, Li GX, Zheng SJ (2014) Xyloglucan Endotransglucosylase-Hydrolase17 interacts with Xyloglucan Endotransglucosylase-Hydrolase31 to confer Xyloglucan Endotransglucosylase action and affect aluminum sensitivity in Arabidopsis. Plant Physiol 165:1566–1574

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (21477104, 41671315) and Zhejiang Provincial Natural Science Foundation of China (No. LZ18D010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingqiang Li.

Additional information

Responsible Editor: Antony Van der Ent.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Liu, Y., Zhang, R. et al. Hemicellulose modification promotes cadmium hyperaccumulation by decreasing its retention on roots in Sedum alfredii. Plant Soil 447, 241–255 (2020). https://doi.org/10.1007/s11104-019-04339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04339-9

Keywords

Navigation