Skip to main content
Log in

Nicotianamine Synthase Gene 1 from the hyperaccumulator Sedum alfredii Hance is associated with Cd/Zn tolerance and accumulation in plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Sedum alfredii Hance is a hyperaccumulator of cadmium (Cd) and zinc (Zn) that exhibits extraordinary accumulation of these metals in various tissues. The Nicotianamine synthase (NAS) genes play key roles in regulating the production of nicotianamine, a non-protein amino acid that facilitates metal homeostasis in plants, but the functions of these genes in S. alfredii remain unknown. The aims of this study were to identify and characterize the NAS gene from S. alfredii (SaNAS1) and explore NAS roles in Cd or Zn tolerance and accumulation.

Methods

One Cd-induced NAS gene from S. alfredii (SaNAS1) was cloned. We determined the subcellular localization of the encoded protein and evaluated SaNAS1 expression. We also assessed SaNAS1 function by conducting a complementary assay with yeast mutants Δzrc1 exposed to Cd or Zn. Finally, transgenic Arabidopsis plants expressing SaNAS1 were produced, and SaNAS1 function was further examined in these plants.

Results

SaNAS1 was highly expressed in response to Cd or Zn exposure, and the encoded protein was distributed throughout the cytoplasm and nucleus. Furthermore, yeast expressing SaNAS1 exhibited increased tolerance to Cd or Zn. Finally, expression of SaNAS1 in Arabidopsis increased nicotianamine production and promoted Cd or Zn accumulation in roots and shoots. SaNAS1-expressing transgenic Arabidopsis lines showed improved seedling growth under Cd or Zn stress compared with wild type, indicating that SaNAS1 enhances tolerance to both Cd and Zn.

Conclusions

SaNAS1 may play a critical role in Cd or Zn tolerance and hyperaccumulation by regulating nicotianamine level in S. alfredii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Astolfi S, Ortolani MR, Catarcione G, Paolacci AR, Cesco S, Pinton R, Ciaffi M (2014) Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings. Physiol Plantarum 152:646–659

    CAS  Google Scholar 

  • Bauer P, Thiel T, Klatte M, Bereczky Z, Brumbarova T, Hell R, Grosse I (2004) Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol 136:4169–4183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to Iron uptake. Plant Physiol 149:1302–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonneau J, Baumann U, Beasley J, Li Y, Johnson AAT (2016) Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat. Plant Biotechnol J 14:2228–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao YE, Zhang M, Feng Y, Yang XE, Islam E (2010) cDNA-AFLP analysis of inducible gene expression in zinc hyperaccumulator Sedum alfredii Hance under zinc induction. Environ Exp Bot 68:107–112

    CAS  Google Scholar 

  • Chen SN, Sahito ZA, Zhang M, Feng Y, Yang QY, Yang XE (2018) Identification and characterization of four nicotianamine synthase genes in Sedum alfredii Hance. J Biobased Mater Bio 12:551–559

    CAS  Google Scholar 

  • Clemens S, Deinlein U, Ahmadi H, Horeth S, Uraguchi S (2013) Nicotianamine is a major player in plant Zn homeostasis. Biometals 26:623–632

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Cornu JY, Deinlein U, Horeth S, Braun M, Schmidt H, Weber M, Persson DP, Husted S, Schjoerring JK, Clemens S (2015) Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytol 206:738–750

    CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    CAS  PubMed  Google Scholar 

  • Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Kramer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24:708–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Sun L, Yang XE, Liu JX (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS One 8:e64643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    CAS  PubMed  Google Scholar 

  • Han DG, Yang GH, Xu KD, Shao Q, Yu ZY, Wang B, Ge QL, Yu Y (2013) Overexpression of a Malus xiaojinensis Nas1 gene influences flower development and tolerance to iron stress in transgenic tobacco. Plant Mol Biol Rep 31:802–809

    CAS  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    CAS  PubMed  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167

    CAS  PubMed  Google Scholar 

  • Hofmann NR (2012) Nicotianamine in zinc and iron homeostasis. Plant Cell 24:373–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    CAS  PubMed  Google Scholar 

  • Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818

    CAS  PubMed  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis Nicotianamine synthase mutants reveals functions for Nicotianamine in seed Iron loading and Iron deficiency responses. Plant Physiol 150:257–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koen E, Besson-Bard A, Duc C, Astier J, Gravot A, Richaud P, Lamotte O, Boucherez J, Gaymard F, Wendehenne D (2013) Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure. Plant Sci 209:1–11

    CAS  PubMed  Google Scholar 

  • Krämer U (2010) Metal Hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    PubMed  Google Scholar 

  • Kumar RK, Chu HH, Abundis C, Vasques K, Rodriguez DC, Chia JC, Huang R, Vatamaniuk OK, Walker EL (2017) Iron-nicotianamine transporters are required for proper long-distance iron signaling. Plant Physiol 175:1254–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    PubMed  Google Scholar 

  • Leitenmaier B, Kupper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00374

  • Liang J, Shohag MJI, Yang XE, Tian SK, Zhang YB, Feng Y, He ZL (2014) Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Ecotox Environ Safe 100:159–165

    CAS  Google Scholar 

  • Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. P Natl Acad Sci USA 96:7098–7103

    CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587

    CAS  PubMed  Google Scholar 

  • Lu LL, Tian SK, Zhang J, Yang X, Labavitch JM, Webb SM, Latimer M, Brown PH (2013) Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol 198:721–731

    CAS  PubMed  Google Scholar 

  • Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    CAS  PubMed  Google Scholar 

  • Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK (2003) Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol 132:1989–1997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    CAS  Google Scholar 

  • Nozoye T (2018) The nicotianamine synthase gene is a useful candidate for improving the nutritional qualities and Fe-deficiency tolerance of various crops. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00340

  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014) Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXΦ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J 77:246–260

    PubMed  Google Scholar 

  • Nozoye T, Otani M, Senoura T, Naknishi H, Nishizawa NK (2017) Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil. Plant Soil 418:75–88

    CAS  Google Scholar 

  • Pianelli K, Mari S, Marquès L, Lebrun M, Czernic P (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgenic Res 14:739–748

    CAS  PubMed  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sang J, Han XJ, Liu MY, Qiao GR, Jiang J, Zhuo RY (2013) Selection and validation of reference genes for real-time quantitative PCR in hyperaccumulating ecotype of Sedum alfredii under different heavy metals stresses. PLoS One 8:e82927

    PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Higuchi K, Nakanishi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes from Arabidopsis thaliana. Soil Sci Plant Nutr 45:993–1002

    CAS  Google Scholar 

  • Tang L, Luo WJ, Chen WK, He ZL, Gurajala HK, Hamid Y, Deng MH, Yang XE (2017) Field crops (Ipomoea aquatica Forsk. And Brassica chinensis L.) for phytoremediation of cadmium and nitrate co-contaminated soils via rotation with Sedum alfredii Hance. Environ Sci Pollut R 24:19293–19305

    CAS  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182:116–126

    CAS  PubMed  Google Scholar 

  • Tian SK, Lu LL, Labavitch J, Yang XE, He ZL, Hu HN, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian SK, Xie RH, Wang HX, Hu Y, Hou DD, Liao XC, Brown PH, Yang HX, Lin XY, Labavitch JM, Lu LL (2017) Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. J Exp Bot 68:2387–2398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsednee M, Yang SC, Lee DC, Yeh KC (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol 166:839–U553

    PubMed  PubMed Central  Google Scholar 

  • Tsednee M, Huang YC, Chen YR, Yeh KC (2016) Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes. Sci Rep 6:26785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wada Y, Yamaguchi I, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Highly sensitive quantitative analysis of nicotianamine using LC/ESI-TOF-MS with an internal standard. Biosci Biotechnol Biochem 71:435–441

    CAS  PubMed  Google Scholar 

  • Wang X, Liu YO, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X (2008) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) gaud. Environ Exp Bot 62:389–395

    CAS  Google Scholar 

  • Wang K, Zhu ZQ, Huang HG, Li TQ, He ZL, Yang XE, Alva A (2012) Interactive effects of cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii. J Soils Sediments 12:556–564

    CAS  Google Scholar 

  • Wang M, Gruissem W, Bhullar NK (2013) Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00156

  • Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    CAS  PubMed  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen WQ, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    CAS  PubMed  Google Scholar 

  • Xiao WD, Wang H, Li TQ, Zhu ZQ, Zhang J, He ZL, Yang XE (2013) Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environ Sci Pollut R 20:380–389

    PubMed  Google Scholar 

  • Xu WF, Shi WM, Yan F, Zhang BA, Liang JS (2011) Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aquat Bot 94:37–43

    CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    CAS  Google Scholar 

  • Yang XE, Li TQ, Long XX, Xiong YH, He ZL, Stoffella PJ (2006) Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant Soil 284:109–119

    CAS  Google Scholar 

  • Yang GH, Li J, Liu W, Yu ZY, Shi Y, Lv BY, Wang B, Han DG (2015) Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Sci Hortic (Amsterdam) 183:77–86

    CAS  Google Scholar 

  • Yang QY, Ma XX, Luo S, Gao J, Yang XE, Feng Y (2018) SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii Hance. Environ Exp Bot 155:107–117

    CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    CAS  PubMed  Google Scholar 

  • Zhang YG, Kong J, Wang Y, Xu XF, Liu LL, Li TZ, Zhu YJ, Han ZH (2009) Isolation and characterization of a nicotianamine synthase gene MxNas1 in Malus xiaojinensis. J Hortic Sci Biotechnol 84:47–52

    CAS  Google Scholar 

  • Zhang J, Zhang M, Shohag MJI, Tian SK, Song HY, Feng Y, Yang X (2016) Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Planta 243:577–589

    PubMed  Google Scholar 

  • Zheng LQ, Cheng ZQ, Ai CX, Jiang XH, Bei XS, Zheng Y, Glahn RP, Welch RM, Miller DD, Lei XG, Shou HX (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5:e10190

    PubMed  PubMed Central  Google Scholar 

  • Zhou WB, Qiu BS (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169:737–745

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Xiaodan Wu and Shaokun Pang for help with LC-MS/MS and ICP-MS analyses, respectively, and Jie Zhang, Xuerui Cao, and Wanli Guo for excellent technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 41721001, 31872956, 31372128), by the Ministry of Science and Technology of China (2016YFD0800805), by the Public Benefit Technology Applied Research Project of Zhejiang Province (LGN19C150013), and by the Fundamental Research Funds of Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengke Tian or Xiaoe Yang.

Additional information

Responsible Editor: Miroslav Nikolic.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 13714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, M., Feng, Y. et al. Nicotianamine Synthase Gene 1 from the hyperaccumulator Sedum alfredii Hance is associated with Cd/Zn tolerance and accumulation in plants. Plant Soil 443, 413–427 (2019). https://doi.org/10.1007/s11104-019-04233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04233-4

Keywords

Navigation