Skip to main content

Advertisement

Log in

The role of complementarity and selection effects in P acquisition of intercropping systems

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Enhanced crop productivity by intercropping is commonly assumed to be driven by resource complementarity. However, relatively few studies have directly measured resource acquisition to assess potential mechanisms underlying enhanced performance of intercropping.

Methods

A long-term field experiment with three P application rates (0, 40, 80 kg P ha−1 yr.−1) and four maize-based intercropping systems was used to assess P acquisition and P fertilizer recovery efficiency (PRE) for three consecutive years. To identify underlying mechanisms, the additive partitioning method was applied to determine complementarity (CE) and selection effects (SE) in P acquisition of intercropping.

Results

Average P acquisition increased by 28.4% and 27.6% compared to their monocultures in faba bean/maize and chickpea/maize intercropping, respectively. However, P acquisition was generally not enhanced and even reduced in the last year in soybean/maize and oilseed rape/maize intercropping. Enhanced P acquisition was due to positive CE in faba bean/maize, and to positive CE and SE in chickpea/maize intercropping.

Conclusions

Increased resource acquisition via CE and/or SE depended on the particular crop combination in intercropping systems. Application of the additive partitioning method to intercropping may help to identify underlying mechanisms of overyielding and carefully select crop combinations to enable more efficient resource use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CE:

Complementarity effect

C/M:

Chickpea/maize system

F/M:

Faba bean/maize system

N:

Nitrogen

OR/M:

Oilseed rape/maize system

P:

Phosphorus

PRE:

Phosphorus fertilizer recovery efficiency

RY:

Relative yield

SE:

Selection effect

S/M:

Soybean/maize system

References

  • Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477–480

    Article  CAS  PubMed  Google Scholar 

  • Bao SD (2005) Analysis on soil and agricultural chemistry (in Chinese). China Agricultural Press, Beijing

    Google Scholar 

  • Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata J-C, Le Roux X, Niboyet A, Porcher E (2017) Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron Sustain Dev 37:13

    Article  Google Scholar 

  • Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen E, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev 35:911–935

    Article  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol Plant Mol Biol 24:225–252

    Article  CAS  Google Scholar 

  • Brooker RW, Bennett AE, Cong W-F, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ, Li L, McKenzie BM, Pakeman RJ, Paterson E, Schoeb C, Shen J, Squire G, Watson CA, Zhang C, Zhang F, Zhang J, White PJ (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117

    Article  PubMed  Google Scholar 

  • Broz AK, Broeckling CD, De-la-Pena C, Lewis MR, Greene E, Callaway RM, Sumner LW, Vivanco JM (2010) Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol 10:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Cahill JF, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM, Clair CCS (2010) Plants integrate information about nutrients and neighbors. Science 328:1657–1657

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer Verlag, Dordrecht

    Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci U S A 104:18123–18128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien SH, Sikora FJ, Gilkes RJ, McLaughlin MJ (2012) Comparing of the difference and balance methods to calculate percent recovery of fertilizer phosphorus applied to soils: a critical discussion. Nutr Cycl Agroecosyst 92:1–8

    Article  Google Scholar 

  • Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao XG, Zhang FS, van der Werf W (2015) Intercropping enhances soil carbon and nitrogen. Global Chang Biol 21:1715–1726

  • Corre-Hellou G, Fustec J, Crozat Y (2006) Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282:195–208

    Article  CAS  Google Scholar 

  • Cu STT, Hutson J, Schuller KA (2005) Mixed culture of wheat (Triticum aestivum L.) with white lupiu (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat. Plant Soil 272:143–151

  • Dissanayaka DMSB, Maruyama H, Masuda G, Wasaki J (2015) Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply. Plant Soil 390:223–236

    Article  CAS  Google Scholar 

  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29

    Article  CAS  Google Scholar 

  • Fargione J, Tilman D, Dybzinski R, Hille Ris Lambers J, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M (2007) From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc R Soc B-Biol Sci 274:871–876

    Article  Google Scholar 

  • Fridley JD (2001) The influence of species diversity on ecosystem productivity: how, where, and why? Oikos 93:514–526

    Article  Google Scholar 

  • Fridley JD (2002) Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132:271–277

    Article  PubMed  Google Scholar 

  • Fridley JD (2003) Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants. J Ecol 91:396–406

    Article  Google Scholar 

  • Gilbert N (2009) Environment: the disappearing nutrient. Nature 461:716–718

    Article  CAS  PubMed  Google Scholar 

  • Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274:237–250

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009) Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Res 113:64–71

    Article  Google Scholar 

  • He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706

    Article  PubMed  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O'Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  PubMed  Google Scholar 

  • Inal A, Gunes A, Zhang F, Cakmak I (2007) Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiol Biochem 45:350–356

    Article  CAS  PubMed  Google Scholar 

  • Jensen ES (1996) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182:25–38

    Article  CAS  Google Scholar 

  • Jiao XQ, Li HG, Rengel Z, Zhang FS, Shen JB (2015) Dynamic growth pattern and exploitation of soil residual P by Brassica campestris throughout growth cycle on a calcareous soil. Field Crops Res 180:110–117

    Article  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhang FS, Li XL, Christie P, Sun JH, Yang SC, Tang CX (2003) Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr Cycl Agroecosyst 65:61–71

    Article  CAS  Google Scholar 

  • Li SM, Li L, Zhang FS, Tang C (2004) Acid phosphatase role in chickpea/maize intercropping. Ann Bot 94:297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilftation on phosphorus-deficient soils. Proc Natl Acad Sci U S A 104:11192–11196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Dong Y, Li H, Shen J, Zhang F (2014a) The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and faba bean (Vicia faba L.) PLoS One 9:e115804

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Tilman D, Lambers H, Zhang FS (2014b) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203:63–69

    Article  PubMed  Google Scholar 

  • Li B, Li YY, HM W, Zhang FF, Li CJ, Li XX, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci U S A 113:6496–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lithourgidis A, Dordas C, Damalas C, Vlachostergios D (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410

    Google Scholar 

  • Loreau M (1998) Separating sampling and other effects in biodiversity experiments. Oikos 82:600–602

    Article  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei PP, Gui LG, Wang P, Huang JC, Long HY, Christie P, Li L (2012) Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crops Res 130:19–27

    Article  Google Scholar 

  • Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot 50:487–497

    Article  CAS  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589–592

  • STT C, Hutson J, Schuller KA (2005) Mixed culture of wheat (Triticum aestivum L.) with white lupiu (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat. Plant Soil 272:143–151

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  • van Ruijven J, Berendse F (2003) Positive effects of plant species diversity on productivity in the absence of legumes. Ecol Lett 6:170–175

    Article  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    Article  PubMed  Google Scholar 

  • Wang DM, Marschner P, Solaiman Z, Rengel Z (2007) Growth, P uptake and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate. Soil Biol Biochem 39:249–256

    Article  CAS  Google Scholar 

  • Wang ZG, Jin X, Bao XG, Li XF, Zhao JH, Sun JH, Christie P, Li L (2014) Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS One 9:e113984

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZG, Bao XG, Li XF, Jin X, Zhao JH, Sun JH, Christie P, Li L (2015) Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil 391:265–282

    Article  CAS  Google Scholar 

  • Xia HY, Wang ZG, Zhao JH, Sun JH, Bao XG, Christie P, Zhang FS, Li L (2013) Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Res 154:53–64

    Article  Google Scholar 

  • Yu Y, Stomph TJ, Makowski D, van der Werf W (2015) Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crops Res 184:133–144

    Article  Google Scholar 

  • Zhang FS, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248:305–312

    Article  CAS  Google Scholar 

  • Zhang QG, Zhang DY (2006) Resource availability and biodiversity effects on the productivity, temporal variability and resistance of experimental algal communities. Oikos 114:385–396

    Article  Google Scholar 

  • Zhang FS, Shen JB, Zhang JL, Zuo YM, Li L, Chen XP (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Key Research and Development Program of China (Project No.: 2016YFD0300202) and the National Science Foundation of China (Project No.: 31430014). We thank all members involved in the maintenance of the long-term field experiment. The authors also thank the editor and two anonymous reviewers for their helpful suggestions and comments to improve an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Li.

Additional information

Responsible Editor: Martin Weih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XF., Wang, CB., Zhang, WP. et al. The role of complementarity and selection effects in P acquisition of intercropping systems. Plant Soil 422, 479–493 (2018). https://doi.org/10.1007/s11104-017-3487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3487-3

Keywords

Navigation