Skip to main content
Log in

Estimation of viable propagules of black-foot disease pathogens in grapevine cultivated soils and their relation to production systems and soil properties

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The study aimed to assess comparatively the accuracy and efficiency of three culture media protocols for estimating black-foot disease pathogens populations in soils and to examine how shifts in the abundance and composition of black-foot pathogens correspond to changes in specific soil properties.

Methods

Firstly, culture media were compared by evaluating the mycelial growth of selected black-foot pathogens and by estimating the population of Dactylonectria torresensis from artificially infested soils. Secondly, the most efficient culture medium was selected for estimating the viable propagules of black-foot disease pathogens in eight naturally infested soils. An analysis of the soil physicochemical properties was conducted. Data were statistically analyzed in order to explore possible relationships between the studied variables.

Results

Glucose-Faba Bean Rose Bengal Agar (GFBRBA) was selected as the most efficient culture medium. All naturally infested soils tested positive for the presence of black-foot pathogens. D. torresensis was the most frequently isolated species, followed by Dactylonectria alcacerensis and Ilyonectria liriodendri. A positive relationship between calcium carbonate and the Colony-Forming Units (CFUs) level of black-foot pathogens in soil was obtained.

Conclusions

In this study, we provide an early, specific, and accurate detection of viable propagules of black-foot pathogens in soil, which is critical to understand the ecology of these fungi and to design effective management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CEC:

Cation Exchange Capacity

CFU:

Colony-Forming Unit

EC:

Electric conductivity

GFBA:

Glucose-Faba Bean Agar

GFBRGA:

Glucose-Faba Bean Rose Bengal Agar

ITS:

Internal Transcribed Spacer

MRBA:

Modified Rose Bengal Agar

NMDS:

Non-Metric Multidimensional Scaling Analysis

LSD:

Least Significant Difference

PCA:

Principal Component Analysis

PCR:

Polymerase Chain Reaction

PDA:

Potato Dextrose Agar

PDAC:

Potato Dextrose Agar supplemented with 250 mg l−1 of chloramphenicol

SNA:

Spezieller Nährstoffarmer Agar

SOM:

Soil Organic Matter

References

  • Agustí-Brisach C, Armengol J (2013) Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathol Mediterr 52:245–261

    Google Scholar 

  • Agustí-Brisach C, Gramaje D, León M, García-Jiménez J, Armengol J (2011) Evaluation of vineyard weeds as potential hosts of black-foot and petri disease pathogens. Plant Dis 95:803–810

    Article  Google Scholar 

  • Agustí-Brisach C, Gramaje D, García-Jiménez J, Armengol J (2013a) Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. Eur J Plant Pathol 137:103–112

    Article  Google Scholar 

  • Agustí-Brisach C, Gramaje D, García-Jiménez J, Armengol J (2013b) Detection of black-foot and petri disease pathogens in natural soils of grapevine nurseries and vineyards using bait plants. Plant Soil 364:5–13

    Article  Google Scholar 

  • Agustí-Brisach C, Mostert L, Armengol J (2014) Detection and quantification of Ilyonectria spp. associated with black-foot diseases of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathol 63:316–322

    Article  Google Scholar 

  • Agustí-Brisach C, Cabral A, González-Domínguez E, Pérez-Sierra A, León M, Abad-Campos P, García-Jiménez J, Oliveira H, Armengol J (2016) Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain with description of Cylindrodendrum alicantinum sp. nov. Eur J Plant Pathol 145:103–118

    Article  Google Scholar 

  • Aiello D, Guarnaccia V, Epifani F, Perrone G, Polizzi G (2015) 'Cylindrocarpon' and Ilyonectria species causing root and crown rot disease of potted laurustinus plants in Italy. J Phytopathol 163:675–680

    Article  CAS  Google Scholar 

  • Alaniz S, Leon M, García-Jiménez J, Abad P, Armengol J (2007) Characterization of Cylindrocarpon species associated with black-foot disease of grapevine in Spain. Plant Dis 91:1187–1193

    Article  CAS  Google Scholar 

  • Booth CD (1966) The genus Cylindrocarpon. Mycol Pap (CMI) 104:1–56

    Google Scholar 

  • Boughton TJ, Malajczuk N, Robson AD (1978) Suppression of infection of jarrah roots by Phytophthora cinnamomi with application of calcium carbonate. Aust J Bot 26:611–615

    Article  Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659

    Article  PubMed  Google Scholar 

  • Brayford D (1993) Cylindrocarpon. In: Singleton LL, Mihail JD, Rush CM (eds) Methods for research on Soilborne Phytopathogenic fungi. APS Press, St. Paul, pp 103–106

    Google Scholar 

  • Brown JK, Tellier M (2011) Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu Rev Phytopathol 49:345–367

    Article  CAS  PubMed  Google Scholar 

  • Cabello M, Arambarri A (2002) Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province. Argentina, Microbiol Res 157:115–125

    Article  Google Scholar 

  • Cabral A, Groenewald JZ, Rego C, Oliveira H, Crous PW (2012a) Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol Prog 11:655–688

    Article  Google Scholar 

  • Cabral A, Rego C, Nascimento T, Oliveira H, Groenewald JZ, Crous PW (2012b) Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biol 116:62–80

    Article  CAS  PubMed  Google Scholar 

  • Cardoso M, Diniz I, Cabral A, Rego C, Oliveira H (2013) Unveiling inoculum sources of black foot pathogens in a commercial grapevine nursery. Phytopatol Mediterr 52:298–312

    Google Scholar 

  • Carlucci A, Lops F, Mostert L, Halleen F, Raimondo ML (2017) Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopatol Mediterr, doi:10.14601/Phytopathol_Mediterr-18769

  • Chaverri P, Salgado C, Hirooka Y, Rossman AY, Samuels GJ (2011) Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Stud Mycol 68:57–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JH, Rupe JC, Cummings MS, Gbur EE (2001) Isolation and identification of Fusarium solani f sp glycines from soil on modified Nash and Syder’s medium. Plant Dis 85:256–260

    Article  Google Scholar 

  • Crous PW, Groenewald JZ, Risede JM, Hywel-Jones NL (2004) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Stud Mycol 50:415–429

    Google Scholar 

  • Damm U, Fourie PH (2005) A cost-effective protocol for molecular detection of fungal pathogens in soil. South Afr J Sci 101:135–139

    CAS  Google Scholar 

  • Davis JR, Huisman OC, Everson DO, Schneider AT, Sorensen LH (1999) Suppression of Verticillium wilt with wheat and improved yield and quality of the russet Burbank potato. Am J Potato Res 76:254

    Article  Google Scholar 

  • Demanèche S, Jocteur-Monrozier L, Quiquampoix H, Simonet P (2001) Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl Environ Microbi 67:293–299

    Article  Google Scholar 

  • Easton GD, Nagle ME, Seymour MD (1992) Potato production and incidence of Verticillium dahliae following rotation to nonhost crops and soil fumigation in the state of Washington. Am Potato J 69:489–502

    Article  Google Scholar 

  • Edel V, Steinberg C, Gautheron N, Alabouvette C (1997) Populations of nonpathogenic Fusarium oxysporum associated with roots of four plant species compared to soilborne populations. Phytopathology 87:693–697

    Article  CAS  PubMed  Google Scholar 

  • Elmholt S, Labouriau R, Hestbjerg H, Nielsen LM (1999) Detection and estimation of conidial abundance of Penicillium verrucosum in soil by dilution plating on a selective and diagnostic agar medium (DYSG). Mycol Res 103:887–895

    Article  Google Scholar 

  • England LS, Lee H, Trevors JT (1997) Persistence of Pseudomonas aureofaciens strains and DNA in soil. Soil Biol Biochem 29:1521–1527

    Article  CAS  Google Scholar 

  • Erper I, Agustí-Brisach C, Tunali B, Armengol J (2013) Characterization of root rot disease of kiwifruit in the Black Sea region of Turkey. Eur J Plant Pathol 136:291–300

    Article  Google Scholar 

  • Gandon S, Michalakis Y (2002) Local adaptation, evolutionary potential and host–parasite coevolution: interactions between migration, mutation, population size and generation time. J Evolution Biol 15:451–462

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gramaje D, Armengol J (2011) Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Dis 95:1040–1055

    Article  Google Scholar 

  • Halleen F, Crous PW, Petrini O (2003) Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Australas Plant Pathol 32:47–52

    Article  Google Scholar 

  • Halleen F, Fourie PH, Crous PW (2006) A review of black foot disease of grapevine. Phytopathol Mediterr 45:S55–S67

    Google Scholar 

  • Halleen F, Fourie PH, Crous PW (2007) Control of black foot disease in grapevine nurseries. Plant Pathol 56:637–645

    Article  CAS  Google Scholar 

  • Hunter BB, Sylvester MA, Balling J (1980) A rapid method for identifying and recovering species of Cylindrocladium from soil via geranium leaf baiting and a selective agar medium. Proc Pennsylvania Acad Sci 54:157–151

    Google Scholar 

  • Jeewon R, Hyde KD (2007) Detection and diversity of fungi from environmental samples: traditional versus molecular approaches. In Advanced Techniques in Soil Microbiology 11:1–15

    Article  CAS  Google Scholar 

  • Jones RK, Benson DM (2003) Diseases of woody ornamentals and trees in nurseries. APS Press, St. Paul, MN, p 482

    Google Scholar 

  • Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010) Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187:843–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannou C, Mundt CC (1997) Evolution of a pathogen population in host mixtures: rate of emergence of complex races. Theor App Genet 94:991–999

    Article  Google Scholar 

  • Lombard L, Bezuidenhout CM, Crous PW (2013) Ilyonectria black foot rot associated with Proteaceae. Australas Plant Pathol 42:337–349

    Article  Google Scholar 

  • Lombard L, Van Der Merwe NA, Groenewald JZ, Crous PW (2014) Lineages in Nectriaceae: re-evaluating the generic status of Ilyonectria and allied genera. Phytopathol Mediterr 53:515–532

    CAS  Google Scholar 

  • Mehlich A (1984) Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, part 2. SSSA, Madison, Wisc, pp 539–594

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Stevens MHH (2008) Vegan: community ecology package, version 1.11–4. http://vegan.r-forge.r-project.org

  • Orsini L, Remy JC (1976) Utilisation du chlorure de cobaltihexammine pour la determina-tion simultanée de la capacité d’échange et des bases échangeables des sols. Scie Sol 4:269–275

    Google Scholar 

  • Petit E, Barriault E, Baumgartner E, Wilcox WF, Rolshausen PE (2011) Cylindrocarpon species associated with black-foot of grapevine in northeastern United States and southeastern Canada. Am J Enol Viticult 62:177–183

    Article  Google Scholar 

  • Probst C, Jaspers M, Jones EE, Ridgway HJ (2010) A quantitative PCR method for detecting two Cylindrocarpon species in soil. Phytopathol Mediterr 49:115

    Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Reedler RD, Capell BB, Tomlinson LD, Hickey WJ (2003) The extraction of fungal DNA from multiple large soil samples. Can J Plant Pathol 25:182–191

    Article  Google Scholar 

  • Reis P, Cabral A, Nascimento T, Oliveira H, Rego C (2013) Diversity of Ilyonectria species in a young vineyard affected by black foot diseases. Phytopathol Mediterr 52:335–346

    Google Scholar 

  • Schmitthenner AF, Canaday CH (1983) Role of chemical factors in development of Phytophthora diseases. In: Erwin DC, Bartnicki-Garciaand S, Tsao PH (eds) Phytophthora: its biology, taxonomy, ecology and pathology. APS Press, St. Paul, pp 189–196

    Google Scholar 

  • Schroers HJ, Zerjav M, Munda A, Halleen F, Crous PW (2008) Cylindrocarpon pauciseptatum sp. nov., with notes on Cylindrocarpon species with wide, predominantly 3-septate macroconidia. Mycol Res 112:82–92

    Article  CAS  PubMed  Google Scholar 

  • Singleton LL, Mihail JD, Rush CM (1993) Methods for research on Soilborne Phytopathogenic fungi. APS Press, St. Paul, p 265

  • Spiegel Y, Netzer D, Kafkafi U (1987) The role of calcium nutrition on fusarium-wilt syndrome of muskmelon. J Phytopathol 118:220–226

    Article  CAS  Google Scholar 

  • Tolosa-Almendros VM, Lerma ML, Castillo P, Armengol J, Muñoz RM (2016) Identificación de especies de Dactylonectria e Ilyonectria en plantas de vid con síntomas de decaimiento. Abstracts of the XVIII Congress of the Spanish Plant Pathology Society

    Google Scholar 

  • Turner RT, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H, Chang W (2016) Devtools: tools to make developing R packages easier R package version 1.12.0. https://CRAN.R-project.org/package=devtools

  • Woltz SS, Jones JP (1981) Nutritional requirements of Fusarium oxysporum: basis for a disease control system. In: Nelson RE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. Penn St Univ Press, University Park, pp 340–349

    Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. mBio 6(2):e02527–e02514

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was funded by CAR (Government of La Rioja, Spain), under the project “Characterization, epidemiology and control of fungal trunk pathogens of grapevine in La Rioja” (project number R-03-16). We thank “Instituto Navarro de Tecnologías e Infraestructuras Agroalimentarias” (INTIA), Spain, which collected the soil samples from the field in Olite for further use in the experiment. We thank P. Yécora and M. Andrés for technical assistance. David Gramaje was supported by the DOC-INIA program from the National Institute for Agronomic Research (INIA), co-funded by the European Social Fund. Carmen Berlanas was supported by the FPI-INIA program from the INIA. Beatriz López was supported by the PhD program from the Government of La Rioja.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gramaje.

Additional information

Responsible Editor: Stéphane Compant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlanas, C., López-Manzanares, B. & Gramaje, D. Estimation of viable propagules of black-foot disease pathogens in grapevine cultivated soils and their relation to production systems and soil properties. Plant Soil 417, 467–479 (2017). https://doi.org/10.1007/s11104-017-3272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3272-3

Keywords

Navigation