Skip to main content

Advertisement

Log in

Plant and environmental factors associated with drought-induced mortality in two facultative phreatophytic trees

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Drought-induced mortality of tree species is increasing globally. We aimed to investigate spatial patterns and size dependence of mortality of two dominant tree species (Banksia menziesii R. Br and B. attenuata R. Br) capable of accessing shallow watertables in a Banksia-Allocasuarina-Eucalyptus woodland.

Methods

Living and dead trees were mapped within two plots: a high site (55 m to watertable) and a low site (9–20 m to watertable). Diameter at breast height (DBH) (cm) was measured and year of death estimated for deceased trees.

Results

Tree mortality was higher for most species in the high site. Across sites mortality was greatest during 2011 for most species including Banksia trees following the 2010 drought. Species differences in mortality were observed between B. attenuata and B. menziesii in the high site only. A greater number of large dead Banksias was observed in the high site. Spatial analysis indicated that local scale competition did not contribute to the death of these Banksias, however stand-level competition may have occurred.

Conclusions

We conclude that drought-induced mortality of Banksia trees is more prevalent in landscape regions where trees cannot access the watertable and due to greater water demands of larger trees, mortality is more frequent in these individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adekoya B (2014) Time-lapse geophysical monitoring of subsurface hydrology at Kings Park. Honours dissertation, School of Geology and Geography, University of Western Australia, Crawley, Western Australia, Australia

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Anderegg WRL, Kane LM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3:30–36. doi:10.1038/NCLIMATE1635

    Article  Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analysing spatial point patterns. J Stat Softw 12:1548–7660

    Article  Google Scholar 

  • Baddeley A, Diggle PJ, Hardegen A, Lawrence T, Milne RK, Nair G (2014) On tests of spatial pattern based on simulation envelopes. Ecol Monogr 84:477–489

    Article  Google Scholar 

  • Baird AM (1977) Regeneration after fire in Kings Park, Perth, Western Australia. J R Soc West Aust Soc West Aust 60:1–22

    Google Scholar 

  • Bates BC, Hope P, Ryan B, Smith I, Charles S (2008) Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Clim Change 89:339–354. doi:10.1007/s10584-007-9390-9

    Article  Google Scholar 

  • Beard JS (1967) Natural woodland in Kings Park, Perth. West Aust Nat 10:77–84

    Google Scholar 

  • Bessell-Browne JA (1990) Kings park soil survey. Division of research management, Department of Agriculture

  • BGPA GIS database (2014) Vegetation and fire history regions of Kings Park and Bold Park Geographic Information System layers, Botanic Gardens and Parks Authority, Commonwealth of Australia

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343. doi:10.1007/s10021-005-0126-2

    Article  Google Scholar 

  • Boyden S, Binkley D, Shepperd W (2005) Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. For Ecol Manage 219:43–55. doi:10.1016/j.foreco.2005.08.041

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers O, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci U S A 102:15144–15148. doi:10.1073/pnas.0505734102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT (2009) Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ 7:185–189. doi:10.1890/080016

    Article  Google Scholar 

  • Breshears DD, Adams HD, Eumus D, McDowell NG, Law DJ, Will RE, Williams AP, Zou CB (2013) The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front Plant Sci. doi:10.3389/fpls.2013.00266

    PubMed  PubMed Central  Google Scholar 

  • Brouwers N, Matusick G, Ruthrof K, Lyons T, Hardy G (2013) Landscape-scale assessment of tree crown dieback following extreme drought and heat in a Mediterranean eucalypt forest ecosystem. Landsc Ecol 28:69–80. doi:10.1007/s10980-012-9815-3

    Article  Google Scholar 

  • Bureau of Meteorology (2014) Australian Government, Commonwealth of Australia. http://www.bom.gov.au/. Accessed 9 Jan

  • Canham CA, Froend RH, Stock WD (2009) Water stress vulnerability of four Banksia species in contrasting ecohydrological habitats on the Gnangara Mound, Western Australia. Plant Cell Environ 32:64–72. doi:10.1111/j.1365-3040.2008.01904.x

    Article  PubMed  Google Scholar 

  • Claerbout JF, Muir F (1973) Robust modelling with erratic data. Geophysics 38:826–844

    Article  Google Scholar 

  • Clifford MJ, Royer PD, Cobb NS, Breshears DD, Ford PL (2013) Precipitation thresholds and drought-induced tree die-off: insights from patterns of Pinus edulis mortality along an environmental stress gradient. New Phytol 200:413–421. doi:10.1111/nph.12362

    Article  PubMed  Google Scholar 

  • Cooper DJ, Sanderson JS, Stannard DI, Groeneveld DP (2006) Effects of long-term water table drawdown on evapotranspiration and vegetation in an arid region phreatophytes community. J Hydrol 325:21–34. doi:10.1016/j.jhydrol.2005.09.035

    Article  Google Scholar 

  • Cressie NAC (1991) Statistics for spatial data. Wiley, Michigan

    Google Scholar 

  • Crosti R, Dixon KW, Ladd PG, Yates CJ (2007) Changes in the structure and species dominance in vegetation over 60 years in an urban bushland remnant. Pac Conserv Biol 13:158–170

    Article  Google Scholar 

  • Davidson WA (1995) Hydrogeology and groundwater resources of the Perth Region Western Australia. Bull Geol Surv W Aust 142

  • Davies J (1996) Kings Park and Botanic Garden irrigation system planning studies hydro-plan

  • Department of Water (2014) Perth Groundwater atlas, Government of Western Australia. http://www.water.wa.gov.au/idelve/gwa/. Accessed 8 June 2015

  • Descloitres M, Ruiz L, Sekhar M, Legchenko A, Braun J-J, Mohan Kumar MS, Subramanian S (2008) Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrol Process 22:384–394. doi:10.1002/hyp.6608

    Article  Google Scholar 

  • Diggle PJ (1986) Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern. J Neurosci Methods 18:115–125

    Article  CAS  PubMed  Google Scholar 

  • Dodd J, Bell DT (1993) Water relations of the canopy species in a Banksia woodland, Swan Coastal Plain, Western Australia. Aust J Ecol 18:281–293

    Article  Google Scholar 

  • Eamus D, Froend R (2006) Groundwater-dependent ecosystems: the where, what and why of GDEs. Aust J Bot 54:91–96. doi:10.1071/BT06029

    Article  Google Scholar 

  • Eamus D, Boulain N, Cleverly J, Breshears DD (2013) Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol Evol 3:2711–2729. doi:10.1002/ece3.664

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans B, Stone C, Barber P (2013) Linking a decade of forest decline in the south-west of Western Australia to bioclimatic change. Aust For 76:164–172. doi:10.1080/00049158.2013.844055

    Article  Google Scholar 

  • Farrington P, Greenwood EAN, Bartle GA, Beresford JD, Watson GD (1989) Evaporation from Banksia woodland on a groundwater mound. J Hydrol 105:173–186

    Article  Google Scholar 

  • Froend RH, Sommer B (2010) Phreatophytic vegetation response to climate and abstraction- induced groundwater drawdown: examples of long-term spatial and temporal variability in community response. Ecol Eng 36:1191–1200. doi:10.1016/j.ecoleng.2009.11.029

    Article  Google Scholar 

  • Groom PK, Froend R, Mattiske E (2000) Impact of groundwater abstraction on a Banksia woodland, Swan Coastal Plain, Western Australia. Ecol Manage Restor 1:117–124

    Article  Google Scholar 

  • Guarίn A, Taylor AH (2005) Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For Ecol Manage 218:229–244. doi:10.1016/j.foreco.2005.07.014

  • Hope P, Timbal B, Fawcett R (2010) Associations between rainfall variability in the southwest and southeast of Australia and their evolution through time. Int J Climatol 30:1360–1371. doi:10.1002/joc.1964

    Google Scholar 

  • Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annu Rev Ecol Evol Syst 35:623–650. doi:10.1146/annurev.ecolsys.35.112202.130201

    Article  Google Scholar 

  • Hurst JM, Stewart GH, Perry GLW, Wiser SK, Norton DA (2012) Determinants of tree mortality in mixed old-growth Nothofagus forest. For Ecol Manage 270:189–199. doi:10.1016/j.foreco.2012.01.029

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Working group 1 contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–1535

    Google Scholar 

  • Kløve B, Allan A, Bertrand G, Druzynska EA, Goldscheider N, Henry S, Karakava N, Karialainen TP, Koundouri P, Kupfersberger H, Kvoerner J, Lundberg A, Muotka T, Preda E, Pulido-Velazquez M, Schipper P (2011) Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ Sci Policy 14:782–793. doi:10.1016/j.envsci.2011.04.005

    Article  Google Scholar 

  • Lamont BB, Bergl SM (1991) Water relations, shoot and root architecture, and phenology of three co-occurring Banksia species: no evidence for niche differentiation in the pattern of water use. Oikos 60:291–298

    Article  Google Scholar 

  • Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616–628. doi:10.1111/j.1365-2745.2009.01510.x

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Loosemore NB, Ford ED (2006) Statistical inference using the G or K point pattern spatial statistics. Ecology 87:1925–1931

    Article  Google Scholar 

  • Martens SN, Breshears DD, Meyer CW, Barnes FJ (1997) Scales of above-ground and below-ground competition in a semi-arid woodland detected from spatial pattern. J Veg Sci 8:655–664

    Article  Google Scholar 

  • Mattiske EM and Associates (1987) Ecological studies - Kings Park, part A, prepared for the Kings Park Board

  • Matusick G, Ruthrof KX, Brouwers NC, Dell B, Hardy GS (2013) Sudden forest canopy collapse corresponding with extreme drought and heat in a mediterranean-type eucalypt forest in southwestern Australia. Eur J For Res 132:497–510. doi:10.1007/s10342-013-0690-5

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Willions DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to death? New Phytol 178:719–739. doi:10.1111/j.1469-8137.2008.02436.x

    Article  PubMed  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532. doi:10.1016/j.tree.2011.06.003

    Article  PubMed  Google Scholar 

  • Meinzer FC (2003) Functional convergence in plant responses to the environment. Oecologia 134:1–11. doi:10.1007/s00442-002-1088-0

    Article  PubMed  Google Scholar 

  • Moore MM, Huffman DW, Fule PZ, Wallace C, Crouse JE (2004) Comparison of historical and contemporary forest structure and composition on permanent plots in southwestern Ponderosa pine forests. For Sci 50:162–176

    Google Scholar 

  • Mueller RC, Scudder CM, Porter ME, Trotter RT III, Gehring CA, Whitham TG (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093. doi:10.1111/j.1365-2745.2005.01042.x

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nepstad DN, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269. doi:10.1890/06-1046.1

    Article  PubMed  Google Scholar 

  • Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med 17:873–890

    Article  CAS  PubMed  Google Scholar 

  • Nicholls N, Chambers L, Haylock M, Frederiksen C, Jones D, Drosdowsky W (2011) Climate variability and predictability for south-west Western Australia. Bureau of Meteorology Research Centre, Melbourne

    Google Scholar 

  • Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol 187:59–82. doi:10.1007/s11258-006-9133-4

    Article  Google Scholar 

  • Perry GLW, Enright NJ, Miller BP (2008) Spatial patterns in species-rich sclerophyll shrublands of southwestern Australia. J Veg Sci 19:705–716. doi:10.3170/2008-8-18441

    Article  Google Scholar 

  • Poot P, Veneklaas EJ (2013) Species distribution and crown decline are associated with contrasting water relations in four common sympatric eucalypt species in southwestern. Aust. Plant Soil 364:409–423. doi:10.1007/s11104-012-1452-8

    Article  CAS  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rokich DP, Meney KA, Dixon KW, Sivasithamparam K (2001) The impact of soil disturbance on root development in woodlands communities in Western Australia. Aust J Bot 49:169–183. doi:10.1071/BT00015

    Article  Google Scholar 

  • Sommer B, Froend R (2014) Phreatophytic vegetation responses to groundwater depth in a drying mediterranean-type landscape. J Veg Sci 25:1045–1055. doi:10.1111/jvs.12178

    Article  Google Scholar 

  • Stoll P, Weiner J, Muller-Landau H, Müller E, Hara T (2002) Size symmetry of competition alters biomass–density relationships. Proc R Soc Lond Biol Sci 269:2191–2195. doi:10.1098/rspb.2002.2137

    Article  Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields. Methods of geometrical statistics, Wiley, Chichester

  • van Nieuwstadt MGL, Sheil D (2005) Drought, fire and tree survival in a Borneo rain forest, East Kalimantan. Indones J Ecol 93:191–201. doi:10.1111/j.1365-2745.2004.00954.x

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Veneklaas EJ, Poot P (2003) Seasonal patterns in water use and leaf turnover of different plant functional types in a species-rich woodland, south-western Australia. Plant Soil 257:295–304

    Article  CAS  Google Scholar 

  • Zencich SJ, Froend RH, Turner JV, Gailitis V (2002) Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131:8–19. doi:10.1007/S00442-001-0855-

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Professor Adrian Baddeley (University of Western Australia), Associate Professor George Perry (University of Auckland) for statistical advice, Mr Vitor Pistoia (University of Western Australia) for field assistance and Mr Steve Easton and Mr Ryan Glowacki (Botanic Gardens and Parks Authority) for site logistic and experimental planning. The research was supported under Australian Research Councils Linkage projects and funding scheme (project number LP140100736).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Challis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Susan Schwinning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challis, A., Stevens, J.C., McGrath, G. et al. Plant and environmental factors associated with drought-induced mortality in two facultative phreatophytic trees. Plant Soil 404, 157–172 (2016). https://doi.org/10.1007/s11104-016-2793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2793-5

Keywords

Navigation