Skip to main content
Log in

The interactive effect of Juncus effusus and water table position on mesocosm methanogenesis and methane emissions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Aerenchymatous plants can affect methane (CH4) emissions from wetland soils differently, and there is a need to understand specifically under which conditions plants enhance or attenuate CH4 emissions.

Methods

We used a mesocosm set-up to assess the interactive effect of three water table positions (0 cm, −10 cm and −20 cm) and the presence or absence of Juncus effusus L on in vitro soil methanogenesis and methane emissions.

Results

Soil methanogenesis and CH4 emission rates were significantly affected by water table position and vegetation, and the effect of vegetation depended on the water table position. At high water tables (−10 cm and 0 cm) soil methanogenesis and CH4 emissions were high and not significantly affected by vegetation, whereas at the low water table (−20 cm), methanogenesis and CH4 emission rates were lower in unvegetated soils than in soils with J. effusus.

Conclusions

Methane emissions from organic wetland soils at low water tables may be enhanced by J. effusus because of increased methanogenesis and because CH4 enters the roots in the deeper anaerobic layers and are transported through the aerenchymatous tissue of the plants to the atmosphere bypassing the methanotrophic upper layers of the soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong W, Armstrong J, Beckett P (1996) Pressurised aeration in wetland macrophytes: some theoretical aspects of humidity-induced convection and thermal transpiration. Folia Geobotanica 31:25–36. doi:10.1007/bf02803991

    Article  Google Scholar 

  • Beckett PM, Armstrong W, Armstrong J (2001) Mathematical modelling of methane transport by phragmites: the potential for diffusion within the roots and rhizosphere. Aquat Bot 69:293–312

    Article  CAS  Google Scholar 

  • Bhullar G, Iravani M, Edwards P, Olde Venterink H (2013a) Methane transport and emissions from soil as affected by water table and vascular plants. BMC Ecol 13:32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bhullar GS, Edwards PJ, Olde Venterink H (2013b) Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J Plant Ecol 6:298–304. doi:10.1093/jpe/rts045

    Article  Google Scholar 

  • Bhullar GS, Edwards PJ, Olde Venterink H (2014) Influence of different plant species on methane emissions from soil in a restored Swiss wetland. PLoS One 9(2) e89588. doi:10.1371/journal.pone.0089588

  • Bridgham S, Cadillo-Quiroz H, Keller J, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

    Article  PubMed  Google Scholar 

  • Brix H, Sorrell BK, Orr PT (1992) Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol Oceanogr 37:1420–1433

    Article  Google Scholar 

  • Chanton JP, Bauer JE, Glaser PA, et al (1995) Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim Cosmochim Ac 59:3663–3668. doi:10.1016/0016-7037(95)00240-Z

    Article  CAS  Google Scholar 

  • Dinsmore K, Skiba U, Billett M, Rees R (2009) Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant Soil 318:229–242

    Article  CAS  Google Scholar 

  • Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol Biochem 31:421–430. doi:10.1016/S0038-0717(98)00144-8

    Article  CAS  Google Scholar 

  • Fritz C, Pancotto VA, JTM E, et al (2011) Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in patagonia. New Phytol 190:398–408

    Article  PubMed  Google Scholar 

  • Green S, Baird A (2012) A mesocosm study of the role of the sedge eriophorum angustifolium in the efflux of methane - including that due to episodic ebullition - from peatlands. Plant Soil 351:207–218. doi:10.1007/s11104-011-0945-1

    Article  CAS  Google Scholar 

  • Greenup AL, Bradford MA, McNamara NP, Ineson P, Lee JA (2000) The role of eriophorum vaginatum in CH4 flux from an ombrotrophic peatland. Plant Soil 227:265–272

    Article  CAS  Google Scholar 

  • Grünfeld S, Brix H (1999) Methanogenesis and methane emissions: effects of water table, substrate type and presence of phragmites australis. Aquat Bot 64:63–75

    Article  Google Scholar 

  • Henneberg A, Sorrell BK, Brix H (2012) Internal methane transport through juncus effusus: experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation. New Phytol 196:799–806

    Article  PubMed  CAS  Google Scholar 

  • Højsgaard S, Halekoh U (2012) doBy: doBy – Groupwise summary statistics, general linear contrasts, population means (least-square-means), and other utilities. R package version 4.5–5, http://CRAN.R-project.org/package=doBy

  • Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388

    Article  PubMed  Google Scholar 

  • Johansson AE, Gustavsson AM, Öquist MG, Svensson BH (2004) Methane emissions from a constructed wetland treating wastewater - seasonal and spatial distribution and dependence on edaphic factors. Water Res 38:3960–3970

    Article  PubMed  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Article  Google Scholar 

  • Laine A, Wilson D, Kiely G, Byrne KA (2007) Methane flux dynamics in an Irish lowland blanket bog. Plant Soil 299:181–193

    Article  CAS  Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664. doi:10.1111/j.1365-2389.1993.tb02330.x

    Article  CAS  Google Scholar 

  • Moore TR, Roulet NT (1993) Methane flux: water table relations in northern wetlands. Geophys Res Lett 20:587–590. doi:10.1029/93gl00208

    Article  CAS  Google Scholar 

  • Noyce GL, Varner RK, Bubier JL, Frolking S (2014) Effect of carex rostrata on seasonal and interannual variability in peatland methane emissions. J Geophys Res-Biogeo 119(2013) JG002474. doi:10.1002/2013JG002474

  • Petersen SO, Hoffmann CC, Schäfer CM, et al (2012) Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in western Denmark managed by agriculture. Biogeosciences 9:403–422

    Article  CAS  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  • Schimel JP (1995) Plant transport and methane production as controls on methane flux from Arctic wet meadow tundra. Biogeochemistry 28:183–200

    Article  CAS  Google Scholar 

  • Schütz H, Seiler W, Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53

    Article  Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB (1985) Methane emissions to the atmosphere through aquatic plants. J Environ Qual 14:40–46

    Article  CAS  Google Scholar 

  • Shannon RD, White JR (1994) A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27:35–60

    Article  Google Scholar 

  • Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. J Ecol 84:239–246

    Article  CAS  Google Scholar 

  • Sorrell BK, Boon PI (1992) Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshw Biol 27:435–445. doi:10.1111/j.1365-2427.1992.tb00552.x

    Article  CAS  Google Scholar 

  • Sorrell BK, Boon PI (1994) Convective gas flow in eleocharis sphacelata R. Br.: methane transport and release from wetlands. Aquat Bot 47:197–212

    Article  CAS  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9:1185–1192

    Article  Google Scholar 

  • Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82

    Article  CAS  Google Scholar 

  • Ström L, Lamppa A, Christensen TR (2006) Greenhouse gas emissions from a constructed wetland in southern sweden. Wetl Ecol Manag 15:43–50. doi:10.1007/s11273-006-9010-x

    Article  CAS  Google Scholar 

  • Ström L, Tagesson T, Mastepanov M, Christensen TR (2012) Presence of eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland. Soil Biol Biochem 45:61–70. doi:10.1016/j.soilbio.2011.09.005

    Article  CAS  Google Scholar 

  • van Bodegom P, Stams F, Mollema L, Boeke S, Leffelaar P (2001) Methane oxidation and the competition for oxygen in the rice rhizosphere. Appl Environ Microb 67:3586–3597. doi:10.1128/AEM.67.8.3586-3597.2001

    Article  Google Scholar 

  • Visser E, Bögemann (2006) Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol 171:305–314

    Article  PubMed  CAS  Google Scholar 

  • Yavitt JB, Knapp AK (1998) Aspects of methane flow from sediment through emergent cattail (typha latifolia) plants. New Phytol

  • Zhai X, Piwpuan N, Arias CA, Headley T, Brix H (2013) Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems? Ecol Eng 61:555–563. doi:10.1016/j.ecoleng.2013.02.014

    Article  Google Scholar 

Download references

Acknowledgments

We thank Fahrudin Zec and Helge Bülow for assistance with the experimental set-up. The study was supported by the Graduate School of Science and Technology, Aarhus University, via a scholarship to Anders Henneberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Henneberg.

Additional information

Responsible Editor: Klaus Butterbach-Bahl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henneberg, A., Brix, H. & Sorrell, B.K. The interactive effect of Juncus effusus and water table position on mesocosm methanogenesis and methane emissions. Plant Soil 400, 45–54 (2016). https://doi.org/10.1007/s11104-015-2707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2707-y

Keywords

Navigation