Skip to main content
Log in

Do the invasive trees, Ailanthus altissima and Robinia pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in Central Spain?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

To assess the impacts of Ailanthus altissima and Robinia pseudoacacia on the whole litterfall process and on soil properties of riparian ecosystems of Central Spain by comparing invaded and non-invaded forests.

Methods

We selected 3–4 plots of four different types of forests: invaded by A. altissima or R. pseudoacacia, or dominated by the native Fraxinus angustifolia or Populus alba. In each plot we collected the litter monthly over 2 years and separated the litter from different plant organs. We calculated annual inputs of litter, nitrogen (N) and phosphorus (P) to soil. We also analyzed soil pH, organic matter (OM), N and P.

Results

Most litter fractions from the two invasive trees contained over twice as much N as those from the native P. alba. Although not significantly different, the annual inputs of N in invaded forests were 1.7–2.2 times higher than in native forests. In the invaded forests, extra litterfall peaks were found in summer and/or late-spring (June), corresponding to reproductive and/or leaf litter fractions. The percentage of annual litter represented by these peaks was over twice those in native forests. Soil OM, N and P were higher in invaded than in P. alba forests. In addition, forests invaded by R. pseudoacacia had higher soil OM and N than F. angustifolia forests.

Conclusions

This study showed the capability of A. altissima and R. pseudoacacia to alter soil properties and litterfall dynamics in riparian ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelho M (2001) From litterfall to breakdown in streams: a review. Sci World 1:656–680. doi:10.1100/tsw.2001.103

    Article  CAS  Google Scholar 

  • Abelho M, GraÇa MAS (1996) Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324:195–204. doi:10.1007/BF00016391

  • Allen SE, Grimshaw HM, Parkinson JA, Quarnby C (1974) Chemical analysis of ecological materials. Blackwell, Oxford

    Google Scholar 

  • Bastow JL, Preisser EL, Strong DR (2008) Holcus lanatus invasion slows decomposition through its interaction with a macroinvertebrate detritivore, Porcellio scaber. Biol Invasions 10:191–199. doi:10.1007/s10530-007-9122-0

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  • Bray JR, Gorham E (1964) Litter production in forests of the world. Adv Ecol Res 2(10.1016/S0065-2504(08)60331-1):101–157

    Article  Google Scholar 

  • Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain. Biol Invasions 11:1973–1986. doi:10.1007/s10530-008-9374-3

    Article  Google Scholar 

  • Castro-Díez P, Fierro-Brunnenmeister N, González-Muñoz N, Gallardo A (2012) Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 350:179–191. doi:10.1007/s11104-011-0893-9

    Article  Google Scholar 

  • Castro-Díez P, Valle G, González-Muñoz N, Alonso A (2014) Can the life-history strategy explain the success of the exotic trees Ailanthus altissima and Robinia pseudoacacia in iberian floodplain forests? PLoS ONE 9(6), e100254. doi:10.1371/journal.pone.0100254

    Article  PubMed Central  PubMed  Google Scholar 

  • Cesarz S, Fahrenholz N, Migge-Kleian S, Platner C, Schaefer M (2007) Earthworm communities in relation to tree diversity in a deciduous forest. Eur J Soil Biol 43:61–67. doi:10.1016/j.ejsobi.2007.08.003

    Article  Google Scholar 

  • Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458. doi:10.1111/j.1365-2664.2007.01398.x

    Article  Google Scholar 

  • Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, Von der Lippe M, Weber E (2013) Biological Flora of the British Isles: Robinia pseudoacacia. J Ecol 101:1623–1640. doi:10.1111/1365-2745.12162

    Article  Google Scholar 

  • DAISIE (2009) European invasive alien species gateway. http://www.europe-aliens.org. Accessed 6 Nov 2013

  • De la Cruz M, Peinado M (1996) El paisaje vegetal de la cuenca del río Henares, I. comunidades arbóreas y arbustivas. Wad-Al-Hayara 23:335–396

    Google Scholar 

  • Ellis LM, Crawford CS, Molles MC Jr (1998) Comparison of litter dynamics in native and exotic riparian vegetation along the Middle Rio Grande of central New Mexico, U.S.A. J Arid Environ 38:283–296. doi:10.1006/jare.1997.0334

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32. doi:10.1007/BF02858763

    Article  Google Scholar 

  • Fernández J, Curt MD, Aguado PL, Checa M, Esteban B, Mosquera F, Sánchez J (2012) Caracterización de las comarcas agrarias de España tomo 21 Provincia de Guadalajara. Ministerio de Agricultura Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  • Fernández J, Checa M, Esteban B, Sánchez J, Curt MD, Mosquera F, Romero L, Aguado PL (2013) Caracterización de las comarcas agrarias de España tomo 32 Comunidad de Madrid. Ministerio de Agricultura Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  • GEIB (2006) TOP 20: Las especies exóticas invasoras más dañinas presentes en España GEIB, Serie Técnica N.2. 116

  • Gómez-Aparicio L, Canham CD (2008) Neighborhood models of the effects of invasive tree species on ecosystem processes. Ecol Monogr 78:69–86. doi:10.1890/06-2036.1

    Article  Google Scholar 

  • González E (2012) Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river. Limnetica 31:173–186

    Google Scholar 

  • González E, Muller E, Gallardo B, Comín FA, González-Sanchis M (2010) Factors controlling litter production in a large Mediterranean river floodplain forest. Can J For Res 40:1698–1709. doi:10.1139/X10-102

    Article  Google Scholar 

  • González-Muñoz N, Castro-Díez P, Parker IM (2013) Differences in nitrogen use strategies between native and exotic tree species: predicting impacts on invaded ecosystems. Plant Soil 363:319–329. doi:10.1007/s11104-012-1329-x

    Article  Google Scholar 

  • Gutiérrez-López M, Ranera E, Novo M, Fernández R, Dolores T (2014) Does the invasion of the exotic tree Ailanthus altissima affect the soil arthropod community? The case of a riparian forest of the Henares River (Madrid). Eur J Soil Biol 62:39–48. doi:10.1016/j.ejsobi.2014.02.010

    Article  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337. doi:10.1046/j.1523-1739.1992.06030324.x

    Article  Google Scholar 

  • Hood WG, Naiman RJ (2000) Vulnerability of riparian zones to invasion by exotic vascular plants. Plant Ecol 11050:105–114. doi:10.1023/A:1009800327334

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  • Johanson MB (1995) The chemical composition of needle and leaf litter from Scots pine, Norway spruce and white birch in Scandinavian forests. Forestry 68(1):49–62. doi:10.1093/forestry/68.1.49

    Article  Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727. doi:10.2307/2265777

    Article  Google Scholar 

  • Kirschbaum MUF (2010) The temperature dependence of organic matter decomposition: seasonal temperature variations turn a sharp short-term temperature response into a more moderate annually averaged response. Glob Chang Biol 16:2117–2129. doi:10.1111/j.1365-2486.2009.02093.x

    Article  Google Scholar 

  • Kowarik I, Säumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol Evol Syst 8:207–237. doi:10.1016/j.ppees.2007.03.002

    Article  Google Scholar 

  • Lee YC, Nam JM, Kim JG (2011) The influence of black locust (Robinia pseudoacacia) flower and leaf fall on soil phosphate. Plant Soil 341:269–277. doi:10.1007/s11104-010-0642-5

    Article  CAS  Google Scholar 

  • Martin MR, Tipping PW, Sickman JO (2009) Invasion by an exotic tree alters above and belowground ecosystem components. Biol Invasions 11:1883–1894. doi:10.1007/s10530-008-9366-3

    Article  Google Scholar 

  • Milla R, Castro-Diez P, Maestro-Martinez M, Montserrat-Martí G (2005) Relationship between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytol 168:167–178. doi:10.1111/j.1469-8137.2005.01477.x

    Article  CAS  PubMed  Google Scholar 

  • Motard E, Dusz S, Geslin B, Akpa-Vinceslas M, Hignard C, Babiar O, Clair-Maczulajtys D, Michel-Salzat A (2015) How invasion by Ailanthus altissima transforms soil and litter communities in a temperate forest ecosystem. Biol Invasions. doi:10.1007/s10530-014-0838-3 (online version)

    Google Scholar 

  • Negash M, Starr M (2013) Litterfall production and associated carbon and nitrogen fluxes of seven woody species grown in indigenous agroforestry systems in the south-eastern Rift Valley escarpment of Ethiopia. Nutr Cycl Agroecosyst 97:29–41. doi:10.1007/s10705-013-9590-9

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Bigham JM, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnson CT, Sumner ME (eds) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, Inc., Madison, pp 961–1010

    Google Scholar 

  • Ponge JF, Arpin P, Vannier G (1993) Collembolan response to experimental perturbations of litter supply in a temperate forest ecosystem. Eur J Soil Biol 29(3–4):141–153, HAL id:hal-00506014

    Google Scholar 

  • Prada MA, Arizpe D (2008) Manual de propagación de árboles y arbustos de ribera. Una ayuda para la restauración de riberas en la región mediterránea. Generalitat Valenciana, Valencia

    Google Scholar 

  • R development core team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (http://www.R-project.org/)

    Google Scholar 

  • Rice SK, Westerman B, Federici R (2004) Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecol 174:97–107. doi:10.1023/B:VEGE.0000046049.21900.5a

    Article  Google Scholar 

  • Sanz Elorza M, Dana Sanchez ED, Sobrino-Vesperinas E (2004) Atlas de las plantas alóctonas invasoras en España. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nanipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386

    Article  CAS  PubMed  Google Scholar 

  • Seiwa K, Kikuzawa K (1996) Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species. Vegetatio 123:51–64. doi:10.1007/BF00044887

    Article  Google Scholar 

  • Simons SB, Seastedt TR (1999) Decomposition and nitrogen release from foliage of cottonwood (Populus deltoides) and Russian-olive (Elaeagnus angustifolia) in a riparian ecosystem. Southwest Nat 44(3):256–260

    Google Scholar 

  • Singh KP, Singh PK, Tripathi SK (1999) Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India. Biol Fertil Soils 29:371–378. doi:10.1007/s003740050567

    Article  Google Scholar 

  • Takeda H (1987) Dynamics and maintenance of collembolan community structure in a forest soil system. Res Popul Ecol 29:291–346. doi:10.1007/BF02538892

    Article  Google Scholar 

  • Vilá M, Tessier M, Suehs CM, Brundu G, Carta L, Galanidis A, Lambdon P, Manca M, Medail F, Moragues E, Traveset A, Troumbis AY, Hulme PE (2006) Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33:853–861. doi:10.1111/j.1365-2699.2005.01430.x

    Article  Google Scholar 

  • Vítková M, Tonika J, Müllerová J (2015) Black locust successful invader of a wide range of soil conditions. Sci Total Environ 505:315–328

    Article  PubMed  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical ecosystems. Ecology 65:285–298. doi:10.2307/1939481

    Article  CAS  Google Scholar 

  • Von Holle B, Neill C, Largay EF, Budreski KA, Ozimec B, Clark SA, Lee K (2013) Ecosystem legacy of the introduced N2-fixing tree Robinia pseudoacacia in a coastal forest. Oecologia 172:915–924. doi:10.1007/s00442-012-2543-1

    Article  Google Scholar 

  • Wallace JB (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104. doi:10.1126/science.277.5322.102

    Article  CAS  Google Scholar 

  • Wang Q, Wang S, Huang Y (2008) Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. For Ecol Manag 255:1210–1218. doi:10.1016/j.foreco.2007.10.026

    Article  Google Scholar 

  • Williams MC, Wardle GM (2007) Pine and eucalypt litterfall in a pine-invaded eucalypt woodland: the role of fire and canopy cover. For Ecol Manag 253:1–10. doi:10.1016/j.foreco.2007.06.045

    Article  Google Scholar 

  • Witkowski ETF (1991) Effects of invasive alien acacias on nutrient cycling in the coastal lowlands of the Cape Fynbos. J Appl Ecol 28:1–15. doi:10.2307/2404109

    Article  Google Scholar 

  • Xiong S, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994. doi:10.1046/j.1365-2745.1999.00414.x

    Article  Google Scholar 

  • Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in the South African Fynbos. Restor Ecol 12:44–51. doi:10.1111/j.1061-2971.2004.00289.x

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the projects CGL2011-16388/BOS of the Ministerio de Economía y Competitividad of Spain and POII10-0179-4700 of the Junta de Comunidades de Castilla-La Mancha. Silvia Medina Villar was supported by a grant from the Ministerio de Economía y Competitividad of Spain (FPI fellowship, BES-2011-048379). We are grateful to the support of REMEDINAL3-CM MAE-2719 (Comunidad de Madrid), to Guillermo Valle-Torres and Mónica Otero for their help with field and lab work and to Asier Herrero for climatic data.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Medina-Villar.

Additional information

Responsible Editor: Zucong Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(DOCX 68 kb)

Online resource 2

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Villar, S., Castro-Díez, P., Alonso, A. et al. Do the invasive trees, Ailanthus altissima and Robinia pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in Central Spain?. Plant Soil 396, 311–324 (2015). https://doi.org/10.1007/s11104-015-2592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2592-4

Keywords

Navigation