Skip to main content

Advertisement

Log in

Land use change decreases soil carbon stocks in Tibetan grasslands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Backgrounds and aims

Land use is an important factor affecting soil organic carbon (SOC) dynamics and can produce positive C climate feedback, but its effects remain unknown for Tibetan ecosystems.

Methods

Recent land use changes have converted the traditional winter Kobresia pastures of nomads in the northeastern Tibetan Plateau to Elymus pastures or even to cropland. Detailed SOC measurements up to 30-cm depth were combined with analysis of δ13C, δ15N, bulk density, microbial C, and N contents in three land use types.

Results

Bulk density was decreased by conversion from Kobresia pasture to cropland but increased by conversion to Elymus pasture. The loss of 1 % of SOC caused by land use change leads to δ13C increase of 0.8 ‰. Conversion to cropland significantly decreased SOC stocks (10 %) and microbial biomass C, but the C loss (1.6 %) was insignificant in Elymus pasture. Land use changes strongly increased soil δ15N in the top 5 cm.

Conclusions

Conversion to Elymus pasture did not change the C stocks, but conversion to cropland decreased C stocks by 10 % within 10 years. Soil δ13C and δ15N data indicate acceleration of C and N cycling due to the replacement of Kobresia pasture by Elymus pasture and cropland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babel W, Biermann T, Coners H, Falge E, Seeber E, Ingrisch J, Schleuß PM, Gerken T, Leonbacher J, Leipold T, Willinghöfer S, Schützenmeister K, Shibistova O, Becker L, Hafner S, Spielvogel S, Li X, Xu XL, Sun Y, Zhang L, Yang Y, Ma Y, Wesche K, Graf HF, Leuschner C, Guggenberger G, Kuzyakov Y, Miehe G, Foken T (2014) Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences 11:6633–6656

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40

    Article  CAS  PubMed  Google Scholar 

  • Braimoh AK, Vlek PLG (2008) Land use and soil resources. Springer Science + Business Media B.V

  • Brookes PC, Landman A, Pruden G, Jenkenson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Chen H, Billen N, Stahr K, Kuzyakov Y (2007) Effects of nitrogen and intensive mixing on decomposition of 14C-labelled maize (Zea mays L.) residue in soils of different land use types. Soil Tillage Res 96:114–123

    Article  Google Scholar 

  • Cheng W, Chen Q, Xu Y, Han X, Li L (2009) Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: contrasting regional patterns and global patterns. Glob Biogeochem Cyc 23(2): GB2005, doi:10.1029/2008GB003315

  • Chinese Soil Taxonomy Research Group (1995) Chinese soil taxonomy. Science Press, Beijing, pp 58–147

    Google Scholar 

  • Cotrufo MF, Conant RT, Paustian K (2011) Soil organic matter dynamics: land use, management and global change. Plant Soil 338:1–3

    Article  CAS  Google Scholar 

  • Frank DA, Evans RD (1997) Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology 78(7):2238–2248

    Article  Google Scholar 

  • Garten CT (2006) Relationships among forest soil C isotopic composition, partitioning, and turnover times. Can J For Res 36:2157–2167

    Article  CAS  Google Scholar 

  • Garten CT, Cooper LW, Post WM III, Hanson PJ (2000) Climate controls on forest soil C isotope ratios in the Southern Appalachian Mountains. Ecology 81:1108–1119

    Article  Google Scholar 

  • Geist H (2006) Our earth’s changing land: an encyclopedia of land-use and land-cover change. Greenwood Publishing Group

  • German DP, Chacon SS, Allison SD (2011) Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92:1471–1480

    Article  PubMed  Google Scholar 

  • Guillaume T, Muhammad D, Kuzyakov Y (2015) Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ 13C. Glob Change Biol doi:10.1111/gcb.12907

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Hafner S, Unteregelsbacher S, Seeber E, Xu X, Li X, Guggenberger G, Miehe G, Kuzyakov Y (2012) Effect of grazing on carbon stocks and assimilate partitioning in Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Chang Biol 18:528–538

    Article  Google Scholar 

  • He YT, Xu XL, Zhang XZ, Kueffer C, Shi PL (2014) Cushion plant litter shifts nitrogen mineralization to immobilization at high but not low temperature in an alpine meadow. Plant Soil 383:415–426

    Article  CAS  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Ouimette AP (2009) Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95:355–371

    Article  CAS  Google Scholar 

  • Houghton RA (1995) Changes in the storage of terrestrial carbon since 1850. In: Soils and global change. CRC Press, Inc, Boca Raton, pp 45–65

    Google Scholar 

  • Ingrisch J, Biermann T, Seeber E, Leipold E, Li M, Ma Y, Xu XL, Miehe G, Guggenberger G, Foken T, Kuzyakov (2015) Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling. Sci Total Environ 505:1213–1224

    Article  CAS  PubMed  Google Scholar 

  • Jendinson DS, Adamas DE, Wild A (1991) Model estimated of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  Google Scholar 

  • Kaiser K, Schoch WH, Miehe G (2007) Holocene paleosols and colluvial sediments in Northeast Tibet (Qinghai Province, China): properties, dating and paleoenvironmental implications. Catena 69(2):91–102

    Article  Google Scholar 

  • Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob Chang Biol 10:1–8

    Article  Google Scholar 

  • LeCain DR, Morgan JA, Schuman GE, Reeder JD, Hart RH (2002) Carbon exchange and species composition of grazed pastures and exclosures in the short grass steppe of Colorado. Agric Ecosyst Environ 93:421–435

    Article  Google Scholar 

  • Li YN, Zhao XQ, Cao GM, Zhao L, Wang QX (2004) Analyses on climates and vegetation productivity background at Haibei Alpine Meadow Ecosystem Research Station. Plateau Meteorology 23:558–567

  • Li YM, Cao GM, Wang YS (2006) Effects of reclamation on soil organic carbon in Haibei alpine meadow. Chin J Ecol 25:911–915

    CAS  Google Scholar 

  • Liu JY, Kuang WJ, Zhang ZX, Xu XL, Chen YW, Jia N, Zhou WC, Zhang SW, Li RD, Yan CZ, Wu SX, Shi XZ, Jiang N, Yu DS, Pan XZ, Chi WF (2014) Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geograph Sin 69:3–14

    Google Scholar 

  • McSherry ME, Ritchie ME (2013) Effects of grazing on grassland soil carbon: a global review. Glob Chang Biol 19:1347–1357

    Article  PubMed  Google Scholar 

  • Miehe G, Miehe S, Kaiser K, Liu JQ, Zhao XQ (2008) Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan plateau. Ambio 37:272–279

    Article  PubMed  Google Scholar 

  • Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, La D, Schlütz F (2009) How old is pastoralism in Tibet? an ecological approach to the making of a Tibetan landscape. Palaeogeogr Palaeoclimatol Palaeoecol 276(1):130–147

    Article  Google Scholar 

  • Miehe G, Bach K, Miehe S, Kluge J, Yang Y, La D, Co S, Wesche K (2011) Alpine steppe plant communities of the Tibetan highlands. Appl Veg Sci 14:547–560

    Article  Google Scholar 

  • Miehe G, Miehe S, Böhner J, Kaiser K, Hensen I, Madsen D, Liu JQ, Opgenoorth L (2014) How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan plateau from the ecologists’ viewpoint. Quat Sci Rev 86:190–209

    Article  Google Scholar 

  • Newton JD, Wyatt FA, Brown AL (1945) Effects of cultivation and cropping on the chemical composition of some western Canadian prairie province soils. Sci Agric 25:718–737

    CAS  Google Scholar 

  • Piñeiro G, Paruelo JM, Oesterheld M, Jobbágy EG (2010) Pathways of grazing effects on soil organic carbon and nitrogen. Rangel Ecol Manag 63:109–119

    Article  Google Scholar 

  • Poage MA, Feng XH (2004) A theoretical analysis of steady δ13C profiles of soil organic matter. Glob Biogeochem Cyc 18:GB2016, doi:10.1029/2003GB002195

  • Reid RS, Thornton PK, McCrabb GJ, Kruska RL, Atieno F, Jones PG (2004) Is it possible to mitigate greenhouse gas emissions in pastoral ecosystems of the tropics? Environ Dev Sustain 6:91–109

    Article  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16(3):153–162

    Article  PubMed  Google Scholar 

  • Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y (2011) Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depending on plant community composition. Appl Soil Ecol 48:38–44

    Article  Google Scholar 

  • Šantrůčková H, Bird MI, Lloyd J (2000) Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Funct Ecol 14:108–114

    Article  Google Scholar 

  • Schleuss P, Heitkamp F, Sun Y, Miehe G, Xu XL, Kuzyakov Y (2015) Nitrogen uptake in an alpine Kobresia pasture on the Tibetan Plateau: localisation by 15N labelling and implications for a vulnerable ecosystem. Ecosystems. doi:10.1007/s10021-015-9874-9

  • Song MH, Jiang J, Cao GM, Xu XL (2010) Effects of temperature, glucose and inorganic nitrogen inputs on carbon mineralization in a Tibetan alpine meadow soil. Eur J Soil Biol 46:375–380

    Article  CAS  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, de Remy de Courcelles V, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:GB2023, doi:10.1029/2008GB003327

  • Tian YQ, Xu XL, Song MH, Zhou CP, Gao Q, Ouyang H (2009) Carbon sequestration in two alpine soils on the Tibetan plateau. J Integr Plant Biol 51(9):900–905

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Pausch J, Yu G, Blagodatskaya E, Gao Y, Kuzyakov Y (2015) Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect. Appl Soil Ecol 90:1–10

  • Unteregelsbacher S, Hafner S, Guggenberger G, Miehe G, Xu XL, Liu J, Kuzyakov Y (2012) Response of long-, medium- and short-term turnover processes of the carbon budget to overgrazing on the Tibetan plateau. Biogeochemistry 111:187–201

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Wang W, Fang JY (2009) Soil respiration and human effects on global grasslands. Glob Planet Chang 67(1-2):20–28

  • Wang SP, Wilkes A, Zhang ZC, Chang XF, Lang R, Wang YF, Niu HS (2011) Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agric Ecosyst Environ 142:329–340

    Article  Google Scholar 

  • Wang LX, Okin GS, D’Odorico P, Caylor KK, Macko SA (2013) Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas. Landsc Ecol 28(4):685–698

    Article  Google Scholar 

  • WBGU Special Report (1998) The accounting of biological sinks and sources under the Kyoto Protocol. WBGU, Bremerhaven

    Google Scholar 

  • WRB (1998) World reference base for soil resources. FAO/ISRIC/ISSS, Rome

    Google Scholar 

  • Wu J, Jörgensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass-C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu HB, Guo ZT, Peng CH (2003) Distribution and storage of soil organic carbon in China. Global Biogeochem Cycles 17:1–11

    Google Scholar 

  • Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Chang Biol 14:1592–1599

    Article  Google Scholar 

  • Yi X (2004) Stable carbon isotopic composition in soil organic carbon and C3/C4 source variations at the Haibei Alpine Meadow. Acta Bot Boreal 25(2):336–342

    Google Scholar 

  • Yi X, Yang Y, Zhang X, Li L, Zhang L (2003) No C4 plants found at the Haibei Alpine Meadow Ecosystem Research station in Qinghai, China: evidence from stable carbon isotope studies. Acta Bot Sin 45(11):1291–1296

    Google Scholar 

  • Zhang JW (1988) Vegetation of Xizang Science Press, Bejing

  • Zhang YL, Li BY, Zheng D (2002) A discussion on the boundary and area of the Tibetan plateau in China. Geogr Res 21:1–8

    Google Scholar 

  • Zhou XM (2001) Alpine Kobresia meadows in China. Science Press, Beijing

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Eben Goodale for the language improvements. This study was supported by the National Natural Science Foundation of China (31470560), the Knowledge Innovation Foundation Program for Outstanding Young Scholar of the Chinese Academy of Sciences (KZCX2-YW-QN302), Key Laboratory of Tropical Forest Ecology of Chinese Academy of Sciences, and the German Science Foundation priority programme 1372 “Tibetan Plateau–Formation–Climate–Ecosystems (TiP)” with the contracts KU 1184/14-1,2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingliang Xu.

Additional information

Responsible Editor: Johan Six.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, N., Xu, X., Cao, G. et al. Land use change decreases soil carbon stocks in Tibetan grasslands. Plant Soil 395, 231–241 (2015). https://doi.org/10.1007/s11104-015-2556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2556-8

Keywords

Navigation