Skip to main content

Advertisement

Log in

Root expression of nitrogen metabolism genes reflects soil nitrogen cycling in an organic agroecosystem

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Roots in agroecosystems encounter spatially and temporally heterogeneous nitrogen (N) availability in soil. Understanding root physiological processes in concert with soil microbial N dynamics following spatially discrete N pulses under field conditions will aid in the management of agroecosystem processes for N use efficiency.

Methods

This study examined the short-term response (<5 days) of tomato (Solanum lycopersicum L.) roots and soil N cycling to a pulse of inorganic N in an undisturbed soil patch on an organic farm using a novel combination of molecular and 15N isotopic techniques.

Results

Tomato roots rapidly responded to and exploited the N pulse via upregulation of key N metabolism genes (e.g. cytosolic glutamine synthetase GS1) that comprise the core physiological response of roots to patchy soil N availability. Strong root activity limited accumulation of soil NO3 despite high rates of gross nitrification. Roots out-competed soil microbes for the inorganic N, even on a short time scale, likely as a result of high plant N demand and microbial C limitation. The transient root gene expression response (absent by 4 days after the N pulse) underscored the sensitivity of root N uptake to local N availability.

Conclusions

Root expression of genes such as GS1 could complement soil inorganic N pools and measurements of soil microbial activity to serve as integrative indicators of rapid plant-soil N cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez JM, Vidal EA, Gutiérrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185–191. doi:10.1016/j.pbi.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  • Barker SJ, Stummer B, Gao L et al (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant J 15:791–797

    Article  CAS  Google Scholar 

  • Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182:608–620. doi:10.1111/j.1469-8137.2009.02823.x

    Article  CAS  PubMed  Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157

    Article  Google Scholar 

  • Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262. doi:10.1016/j.soilbio.2013.10.004

    Article  CAS  Google Scholar 

  • Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36. doi:10.1016/S0038-0717(02)00233-X

    Article  CAS  Google Scholar 

  • Burger M, Jackson LE (2005) Plant and microbial nitrogen use and turnover: rapid conversion of nitrate to ammonium in soil with roots. Plant Soil 266:289–301. doi:10.1007/s11104-005-1362-0

    Article  Google Scholar 

  • Cabrera M, Beare M (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012

    Article  CAS  Google Scholar 

  • Cahill JF, McNickle GG (2011) The behavioral ecology of nutrient foraging by plants. Annu Rev Ecol Evol Syst 42:289–311. doi:10.1146/annurev-ecolsys-102710-145006

    Article  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J et al (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    Article  CAS  Google Scholar 

  • Cren M, Hirel B (1999) Glutamine synthetase in higher plants: regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol 40:1187–1193. doi:10.1093/oxfordjournals.pcp.a029506

    Article  CAS  Google Scholar 

  • Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution. J Soil Sci 42:335–349

    Article  CAS  Google Scholar 

  • Drinkwater LE, Snapp S (2007) Nutrients in agroecosystems: rethinking the management paradigm. Adv Agron 92:163–186

    CAS  Google Scholar 

  • El Omari R, Rueda-López M, Avila C et al (2010) Ammonium tolerance and the regulation of two cytosolic glutamine synthetases in the roots of sorghum. Funct Plant Biol 37:55–63. doi:10.1071/FP09162

    Article  Google Scholar 

  • Elia A, Conversa G (2012) Agronomic and physiological responses of a tomato crop to nitrogen input. Eur J Agron 40:64–74. doi:10.1016/j.eja.2012.02.001

    Article  Google Scholar 

  • Evans RD, Bloom AJ, Sukrapanna SS, Ehleringer JR (1996) Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ 19:1317–1323. doi:10.1111/j.1365-3040.1996.tb00010.x

    Article  Google Scholar 

  • Foster JC (1995) Soil nitrogen. In: Alef K, Nannipieri P (eds) Methods appl. soil microbiol. biochem. Academic, San Diego, pp 79–87

    Google Scholar 

  • Frank DA, Groffman PM (2009) Plant rhizospheric N processes: what we don’t know and why we should care. Ecology 90:1512–1519. doi:10.1890/08-0789.1

    Article  PubMed  Google Scholar 

  • Gansel X, Muños S, Tillard P, Gojon A (2001) Differential regulation of the NO3 and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143–155

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A et al (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms—a review. Soil Biol Biochem 42:2058–2067. doi:10.1016/j.soilbio.2010.08.021

    Article  CAS  Google Scholar 

  • Giller KE, Chalk P, Dobermann A et al (2004) Emerging technologies to increase the efficiency and use of fertilizer nitrogen. In: Mosier AR, Syers JK, Freney JR (eds) Agric. nitrogen cycle. Island Press, Washington, pp 35–52

    Google Scholar 

  • Glass ADM (2003) Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. CRC Crit Rev Plant Sci 22:453–470. doi:10.1080/07352680390243512

    Article  CAS  Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN et al (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  CAS  PubMed  Google Scholar 

  • Grandy A, Kallenbach C, Loecke TD et al (2012) The biological basis for nitrogen management in agroecosystems. In: Cheeke TE, Coleman DC, Wall DH (eds) Microb. Sustain. Agroecosystems. CRC Press, Ecol, pp 113–132

    Google Scholar 

  • Harrison KA, Bol R, Bardgett RD (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–999

    Article  PubMed  Google Scholar 

  • Hartz T, Bottoms T (2009) Nitrogen requirements of drip-irrigated processing tomatoes. HortSci 44:1988–1993

    Google Scholar 

  • Hirel B, Lea PJ (2001) Ammonium assimilation. In: Lea PJ, Morot-Gaundry JF (eds) Plant nitrogen. Springer, Berlin, pp 79–99

    Chapter  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi:10.1111/j.1469-8137.2004.01015.x

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Berta G, Doussan C et al (2009) Plant root growth, architecture and function. Plant Soil 321:153–187. doi:10.1007/s11104-009-9929-9

    Article  CAS  Google Scholar 

  • Inselsbacher E, Hinko-Najera Umana N, Stange FC et al (2010) Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biol Biochem 42:360–372. doi:10.1016/j.soilbio.2009.11.019

    Article  CAS  Google Scholar 

  • Jackson LE, Bloom AJ (1990) Root distribution in relation to soil nitrogen availability in field-grown tomatoes. Plant Soil 128:115–126

    Article  CAS  Google Scholar 

  • Jackson R, Caldwell M (1989) The timing and degree of root proliferation in fertile-soil microsites for three cold-desert perennials. Oecologia 81:149–153

    Article  Google Scholar 

  • Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415. doi:10.1016/0038-0717(89)90152-1

    Article  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363. doi:10.1146/annurev.arplant.59.032607.092932

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson D, Brookes P, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol Biochem 36:5–7. doi:10.1016/j.soilbio.2003.10.002

    Article  CAS  Google Scholar 

  • Jensen ES (1997) Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues. Biol Fertil Soils 24:39–44

    Article  CAS  Google Scholar 

  • Kichey T, Heumez E, Pocholle D et al (2006) Combined agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine synthetase. New Phytol 169:265–78. doi:10.1111/j.1469-8137.2005.01606.x

  • Kirkham D, Bartholomew W (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Proc 33–34

  • Lauter FR, Ninnemann O, Bucher M et al (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci U S A 93:8139–8144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linn D, Doran J (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272

    Article  CAS  Google Scholar 

  • Lopes MS, Araus JL (2008) Comparative genomic and physiological analysis of nutrient response to NH4 +, NH4 +:NO3 and NO3 in barley seedlings. Physiol Plant 134:134–150. doi:10.1111/j.1399-3054.2008.01114.x

    Article  CAS  PubMed  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305. doi:10.1093/jxb/erh147

    Article  PubMed  Google Scholar 

  • Lu M, Yang Y, Luo Y et al (2011) Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:1040–1050. doi:10.1111/j.1469-8137.2010.03563.x

    Article  CAS  PubMed  Google Scholar 

  • Lundquist E, Jackson L, Scow K (1999) Wet–dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol Biochem 31:1031–1038

    Article  CAS  Google Scholar 

  • Machado R, Rosário M, Oliveira G, Portas C (2003) Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant Soil 255:333–341

    Article  CAS  Google Scholar 

  • Magdoff F, Ross D, Amadon J (1984) A soil test for nitrogen availability to corn. Soil Sci Soc Am J 48:1301–1304

    Article  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J et al (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157. doi:10.1093/aob/mcq028

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36. doi:10.1007/s11104-004-0965-1

    Article  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol Chem 5:62–71. doi:10.1006/niox.2000.0319

    Article  CAS  Google Scholar 

  • Moldrup P, Olesen T, Komatsu T et al (2001) Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65:613–623

    Article  CAS  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29. doi:10.1007/s11104-013-1645-9

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al. (2012) Vegan: community ecology package

  • Recous S, Mary B, Faurie G (1990) Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biol Biochem 22:913–922

    Article  CAS  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125. doi:10.1146/annurev.environ.032108.105046

    Article  Google Scholar 

  • Ros GH, Hoffland E, van Kessel C, Temminghoff E (2009) Extractable and dissolved soil organic nitrogen—a quantitative assessment. Soil Biol Biochem 41:1029–1039. doi:10.1016/j.soilbio.2009.01.011

    Article  CAS  Google Scholar 

  • Ruzicka DR, Barrios-Masias FH, Hausmann NT et al (2010) Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biol 10:1–19. doi:10.1186/1471-2229-10-75

    Article  Google Scholar 

  • Ruzicka DR, Hausmann NT, Barrios-Masias FH et al (2011) Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions. Plant Soil 350:145–162. doi:10.1007/s11104-011-0890-z

    Article  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69. doi:10.1146/annurev.arplant.58.032806.103750

    Article  CAS  PubMed  Google Scholar 

  • Schimel J, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563. doi:10.1016/S0038-0717(03)00015-4

    Article  CAS  Google Scholar 

  • Shi W, Norton JM (2000) Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer. Soil Biol Biochem 32:1453–1457. doi:10.1016/S0038-0717(00)00050-X

    Article  CAS  Google Scholar 

  • Smukler SM, Sánchez-Moreno S, Fonte SJ et al (2010) Biodiversity and multiple ecosystem functions in an organic farmscape. Agric Ecosyst Environ 139:80–97. doi:10.1016/j.agee.2010.07.004

    Article  Google Scholar 

  • Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855

    Article  CAS  Google Scholar 

  • Tsay Y-F, Chiu C-C, Tsai C-B et al (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300. doi:10.1016/j.febslet.2007.04.047

    Article  CAS  PubMed  Google Scholar 

  • Van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192

    Article  Google Scholar 

  • Von Wirén N, Gazzarrini S, Gojon A, Frommer WB (2000a) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261

    Article  Google Scholar 

  • Von Wirén N, Lauter FR, Ninnemann O et al (2000b) Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J 21:167–175

    Article  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots: Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

  • Weier KL, Doran JW, Power JF, Walters DT (1993) Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci Soc Am J 57:66–72

    Article  CAS  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B et al (1990) Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409. doi:10.1126/science.279.5349.407

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc Natl Acad Sci 110:6328–6333. doi:10.1073/pnas.1219993110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhuo D, Okamoto M, Vidmar JJ, Glass AD (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J 17:563–568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the USDA NIFA Organic Agriculture Research and Extension Initiative Award 2009-01415 to LEJ. We thank Felipe Barrios-Masias and other members of the Jackson lab for field assistance and John Yoder for assistance with gene expression. We especially thank Jim and Deborah Durst for facilitating this experiment at their farm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Bowles.

Additional information

Responsible Editor: Angela Hodge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Table 1

(XLSX 10 kb)

Suppl. Table 2

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowles, T.M., Raab, P.A. & Jackson, L.E. Root expression of nitrogen metabolism genes reflects soil nitrogen cycling in an organic agroecosystem. Plant Soil 392, 175–189 (2015). https://doi.org/10.1007/s11104-015-2412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2412-x

Keywords

Navigation