Skip to main content
Log in

Linking tree species identity to anaerobic microbial activity in a forested wetland soil via leaf litter decomposition and leaf carbon fractions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Our aim was to examine the linkage between tree species and anaerobic microbial activity in a forested wetland. If plant species have a unique influence on soil microorganisms, then knowing plant species identity has tremendous potential to predict rates of microbial activity belowground. We expected the linkage to occur via leaf litter decay rate and differences in leaf litter carbon (C) fractions.

Methods

We used leaf litter from 10 tree species (angiosperm and gymnosperm, deciduous and evergreen) and soil from a forested wetland in New York State. We quantified leaf litter decay on the soil surface and correlated variation in rates with leaf mass per area (LMA) and several C fractions. We extracted water-soluble compounds from green leaves and leaf litter and tested their ability to fuel anaerobic carbon dioxide (CO2) production and methane (CH4) production. We also added leaf litter directly to soil to examine how the residue might influence anaerobic microbial activity.

Results

Leaf decay rates exhibited a negative linear relationship with LMA. Variations in rates of soil methane (CH4) production were species specific and greater with gymnosperms (mean = 8.6 μmol g−1 d−1) than angiosperms (mean = 3.7 μmol g−1 d−1). Rates of anaerobic CO2 production were less affected by plant species. Pectin and hemicellulose in leaf litter was particularly conducive to anaerobic decomposition and CH4 production.

Conclusions

The influence of plant species on soil microbial activity will become clearer when we can better quantify leaf C fractions and understand the decomposability of each fraction in relationship to others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Anderson T-H, Domsch KH (1985) Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fertil Soils 1:81–89

    Article  CAS  Google Scholar 

  • Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J (2014) Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev. doi:10.1111/brv.12119

  • Ayres E, Steltzer H, Berg S, Wallenstein MD, Simmons BL, Wall DH (2009) Tree species traits influence soil physical, chemical, and biological properties in high elevation forests. PLoS One 4(6):e5964

    Article  PubMed Central  PubMed  Google Scholar 

  • Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261

    Article  CAS  Google Scholar 

  • Baldrian P, Lindahl B (2011) Decomposition in forest ecosystems: after decades of research still novel findings. Fungal Ecol 4:359–361

    Article  Google Scholar 

  • Beerling DJ, Berner RA, Mackenzie FT, Harfoot M, Pyle JA (2009) Methane and the CH4-related greenhouse effect over the past 400 million years. Am J Sci 309:97–113

    Article  CAS  Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition. Ecol Bull 32:373–390

    CAS  Google Scholar 

  • Bonanomi G, Incerti G, Ciannino F, Mingo A, Lanzotti V, Mazzoleni S (2013) Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than C/N and lignin/N ratios. Soil Biol Biochem 56:40–48

    Article  CAS  Google Scholar 

  • Bräuer SL, Yashiro E, Ueno NG, Yavitt JB, Zinder SH (2006) Characterization of acid-tolerant H2/CO2-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State. FEMS Microbiol Ecol 57:206–216

    Article  PubMed  Google Scholar 

  • Cocaign M, Wilberg E, Lindley ND (1991) Sequential demethoxylation reactions during methylotrophic growth of methoxylated aromatic substrates with Eubacterium limosum. Arch Microbiol 155:496–499

    Article  CAS  Google Scholar 

  • Coles JRP, Yavitt JB (2004) Linking belowground carbon allocation to anaerobic CH4 and CO2 production in a forested peatland, New York State. Geomicrobiol J 21:445–454

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Pérez‐Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • De Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758

    Article  PubMed  Google Scholar 

  • Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010) Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci U S A 107:5738–5743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37:2171–2179

    Article  CAS  Google Scholar 

  • Fanin N, Hättenschwiler S, Fromin N (2014) Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil. Plant Soil 379:79–91

    Article  CAS  Google Scholar 

  • Flett RJ, Hamilton RD, Campbell NER (1976) Aquatic acetylene-reduction techniques: solutions to several problems. Can J Microbiol 22:43–51

    Article  CAS  PubMed  Google Scholar 

  • Franklin RB, Mills AL (2003) Multi‐scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol 44:335–346

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Greb SF, DiMichele WA, Gastaldo RA (2006) Evolution and importance of wetlands in Earth history. In: Greb S, DiMichele WA (eds) Wetlands through time, vol 399, Geological Society of America Special Paper., pp 1–40

    Google Scholar 

  • Harrington GJ, Eberle J, Le-Page BA, Dawson M, Hutchison JH (2012) Arctic plant diversity in the Early Eocene greenhouse. Proc R Soc B 279:1515–1521

    Article  PubMed Central  PubMed  Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Coûteaux MM, Roy J, Bonal D (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175

    Article  PubMed  Google Scholar 

  • Hongve D, Van Hees PAW, Lundström US (2000) Dissolved components in precipitation water percolated through forest litter. Eur J Soil Sci 51:667–677

    Article  CAS  Google Scholar 

  • Jung H-JG (1997) Analysis of forage fiber and cell walls in ruminant nutrition. J Nutr 127:810S–813S

    CAS  PubMed  Google Scholar 

  • Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291

    Article  CAS  Google Scholar 

  • Keiser AD, Knoepp JD, Bradford MA (2013) Microbial communities may modify how litter quality affects potential decomposition rates as tree species migrate. Plant Soil 372:167–176

    Article  CAS  Google Scholar 

  • Kiikkilä O, Kanerva S, Kitunen V, Smolander A (2014) Soil microbial activity in relation to dissolved organic matter properties under different tree species. Plant Soil 377:169–177

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Kubiske ME, Holmes WE (2001) Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability, and effects on decomposition. Oikos 94:403–416

    Article  Google Scholar 

  • Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92:1052–1062

    Article  PubMed  Google Scholar 

  • LePage BA, Yang H, Matsumoto M (2005) The evolution and biogeographic history of Metasequoia. In: LePage BA, Williams CJ, Yang H (eds) The geobiology and ecology of Metasequoia. Springer, New York, pp 4–81

    Chapter  Google Scholar 

  • MacDonald GM, Beilman DW, Kremenetski KV, Sheng YW, Smith LC, Velichko AA (2006) Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314:285–288

    Article  CAS  PubMed  Google Scholar 

  • Matthews E, Fung I (1987) Methane emissions from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles 1:61–86

    Article  CAS  Google Scholar 

  • McIver EE, Basinger JF (1999) Early tertiary floral evolution in the Arctic. Ann Mo Bot Gard 86:523–545

    Article  Google Scholar 

  • McLeod AR, Newsham KK, Fry SC (2007) Elevated UV-B radiation modifies the extractability of carbohydrates from leaf litter of Quercus robur. Soil Biol Biochem 39:116–126

    Article  CAS  Google Scholar 

  • McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yun BW (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180:124–132

    Article  CAS  PubMed  Google Scholar 

  • Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry 52:173–205

    Article  Google Scholar 

  • Miller DN, Ghiorse WC, Yavitt JB (1999) Seasonal patterns and controls on methane and carbon dioxide fluxes in forested swamp pools. Geomicrobiol J 16:325–331

    Article  CAS  Google Scholar 

  • Miller DN, Yavitt JB, Madsen EL, Ghiorse WC (2004) Methanotrophic activity, abundance, and diversity in forest swamp pools: spatiotemporal dynamics and influences on methane fluxes. Geomicrobiol J 21:257–271

    Article  CAS  Google Scholar 

  • Miyajima T, Wada E, Hanba YT, Vijarnsorn P (1997) Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochcim Cosmochim Acta 61:3739–3751

    Article  CAS  Google Scholar 

  • Nemergut DR, Cleveland CC, Wieder WR, Washenberger C, Townsend AR (2010) Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem 42:2153–2160

    Article  CAS  Google Scholar 

  • Nykvist N (1963) Leaching and decomposition of water-soluble organic substances from different types of leaf and needle litter. Stud For Suec 3:3–31

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

  • O’Regan M, Williams C, Frey K, Jakobsson M (2011) A synthesis of the long-term paleoclimatic evolution of the Arctic. Oceanography 24:66–80

    Article  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593

    Article  PubMed  Google Scholar 

  • Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–1083

    Article  Google Scholar 

  • Peichl M, Moore TR, Arain MA, Dalva M, Brodkey D, McLaren J (2007) Concentrations and fluxes of dissolved organic carbon in an age-sequence of white pine forests in Southern Ontario, Canada. Biogeochemistry 86:1–17

    Article  CAS  Google Scholar 

  • Podobina VM (2003) Paleocene biota of the West Siberian plain. In: Wing SL, Gingerich PD, Schmitz B, Thomas E (eds) Causes and consequences of globally warm climate in the Early Paleogene, vol 369, The Geological Society of America Special Paper., pp 181–204

    Chapter  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Royer DL, Sack L, Wilf P et al (2007) Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology 33:574–589

    Article  Google Scholar 

  • Schadel C, Blochl A, Richter A, Hoch G (2010) Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem 48:1–8

    Article  PubMed  Google Scholar 

  • Schink B, Zeikus JG (1982) Microbial ecology of pectin decomposition in anoxic lake sediments. J Gen Microbiol 128:393–404

    CAS  Google Scholar 

  • Schreeg LA, Mack MC, Turner BL (2013) Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94:94–105

    Article  PubMed  Google Scholar 

  • Šnajdr J, Cajthaml T, Valášková V, Merhautová V, Petránková M, Spetz P, Leppänen K, Baldrian P (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303

    Article  PubMed  Google Scholar 

  • Steinmann P, Huon S, Roos-Barraclough F, Föllmi KA (2006) A peat core based estimate of late-glacial and Holocene methane emissions from northern peatlands. Glob Planet Chang 53:233–239

    Article  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9:1185–1192

    Article  Google Scholar 

  • Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biol Biochem 43:412–420

    Google Scholar 

  • Swan CM, Palmer MA (2004) Leaf diversity alters litter breakdown in a Piedmont stream. J N Am Benthol Soc 23:15–28

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in ecology, vol 5. Blackwell, Oxford

    Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211

    Article  CAS  Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262

    Article  CAS  Google Scholar 

  • Williams CJ, Yavitt JB (2003) Botanical composition of peat and degree of peat decomposition in three temperate peatlands. Ecoscience 10:85–95

    Google Scholar 

  • Williams CJ, Yavitt JB (2010) Temperate wetland methanogenesis: the importance of vegetation type and root ethanol production. Soil Sci Soc Am J 74:317–325

    Article  CAS  Google Scholar 

  • Williams CJ, Johnson AH, LePage BA, Vann DR, Sweda T (2003) Reconstruction of tertiary metasequoia forests II. Structure, biomass and productivity of Eocene floodplain forests in the Canadian arctic. Paleobiology 29:271–292

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Yavitt JB, Fahey TJ (1986) Long-term litter decay and forest floor leaching in Pinus contorta ecosystems, southeastern Wyoming. J Ecol 74:525–545

    Article  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration and organic chemistry of peat. Geomicrobiol J 14:299–316

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph B. Yavitt.

Additional information

Responsible Editor: Paul Bodelier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavitt, J.B., Williams, C.J. Linking tree species identity to anaerobic microbial activity in a forested wetland soil via leaf litter decomposition and leaf carbon fractions. Plant Soil 390, 293–305 (2015). https://doi.org/10.1007/s11104-015-2403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2403-y

Keywords

Navigation